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Welcome to the CNNA '92

Cellular Neural Networks (CNN) are locally interconnected, regularly repeated, analog
(continuous- or discrctC-timc) circuits having a 1-, 2-, or 3-dimensional grid architecture. Each
cell in a CNN is a nonlinear dynamic system coupled only to its nearest neighbors. One ad-
vantage of CNNs over competing approaches is the ease in implementing VLSI CNN chips,
thereby making real time operations possible. Although proposed barely four years ago, numer-
ous applications in the areas of image processing, pattern recognition, robot vision and motion
detection have since been reported in several international journals, conferences and in the first
IEEE International Workshop on Cellular Neural Networks and their Applications in Budapest in
1990. A special issue of the "International Journal on Circuit Theory and Applications" devoted
to CNNs, has already been published this year. Also currently being prepared and expected to
appear in March 1993, is a special issue of the "Transactions on Crxcuits and Systems".

The first symposium proved to be a truly international and quite successful meeting. CNNA '92
has been able to attract even more interesting contributions from all over the world. We are
anticipating future exciting and intellectually-stimulating meetings at the forthcoming workshops
of this series, which are already being planned for '94 in Roma, and '96 in Sevilla.
This Workshop is intended to share brand-new research results and experiences of the participants,
and to explore future research potentials. In support of these objectives, we have made available
a CNN workstation equipped with a special hardware accelerator and simulation software in
order to provide all participants the opportunity for hands-on experience. This will enable
professionals who are not yet active in this new and innovative area, to launch their own research
and development on CNN very effectively.
The scientific program comprises a total of 46 contributions including an inaugural lecture by
Professor Chua, who introduced CNNs in 1988, and five invited presentations by distinguished
experts. The 40 papers, which have been selected from the submissions, are forming six sessions
on Theory (I and II), Design, Learning, VLSI-Implementation and Applications. At the end of the
workshop an award for the best submitted paper based on an evaluation made by the participants
and the scientific committee, will be presented.
We would like to express our sincere thanks to the members of the program committee for their
effort in reviewing submitted papers and especially to all authors for submitting their excellent
work. Special thanks are also extended to Dr. Gloger and Mrs. Theinert, who bore the main
burden of making this workshop organizationally and socially, an enjoyable event for all of
us. Finally, the support from the sponsoring organizations (IEEE, VDE/ITG) and especially the
generous help from the European Research Office of the US Army is gratefully acknowledged.
We have the pleasure to welcome you to the second International Workshop on Cellular Neural
Networks and their Applications (CNNA 92), October 14-16 in Munich, Germany.

We wish you a successful ,.onference.

Munich, September 1992

.Dr. techn J.A. Nossek
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CNN'92

THE CNN UNIVERSAL MACHINE

Part 1: The architecture

Leon.O.CHUA and Tam~s ROSKA+

The Electronics Research Laboratory and Department of Electrical Engineering and

Computer Science, University of California at Berkeley, Berkeley CA 94720 and the
+ Dual and Neural Computing Systems Laboratory in the Computer and Automation

Institute of the Hungarian Academy of Sciences, Budapest, Kende-u.13/17, H-i 111

Abstract

Various types of CNNs are summarized and the taxonomy of CNN
is given according to the different types of grids, processors,
interactions, and modes of operation. Next, the CNN Universal
Machine is introduced. The architecture and the key features are
outlined. A quite exhaustive list of references completes the paper.

1 INTRODUCTION

Since the invention of the Cellular Neural Network [1,2] several extensions [3-8,

etc.] formed the CNN (cellular nor.linear network) paradigm. CNN is now an

established field, with many scientists, engineers and students contributing to its

development. The silicon and optical implementations and experiments promise

unusually high computing power.

Our new invention, the CNN Universal Machine and Supercomputer, among
others, provide three new capabilities: the analog stored program and the time-
nmultiplex operation of the layers, the wireless detection, and flexible representation of
various PDEs using the generalized Chua's circuit for chaos as well.

Next, we will summarize several types of CNNs, as a taxonomy. Section 2
contains the outline of the basic architecture of the CNN Universal Machine. In Section

3 some additional key features are described. A fairly exhaustive, however not

complete, list of references is attached. The programmability and key application areas

are summarized in a companion paper in this volume.

7803-0875-1/92 $3.00 019921EEE 1



Various CNN types - a taxonomn

In the next table several types of CNNs are summarized according to grid

types, processor types, interaction types, and modes of operation.

Most probably, this table will t3 expanded continuously. In addition, there are

several other issues. For example, the template design and learning, the physical

implementations, qualitative theory, accuracy, and the vast area of applications.

CNN:

Cellular anaiog programmable multidimensional processing array

with dist1'ibuted logic and memory

Grid types Processor types Interaction types Modes of operation

- square, hexagonal - linear (or small signal - linear (one or two - continuous-time, discrete-time

tridiagonal operation in the piece- variables) memorytess (synchronous or

- single and multiple wise-linear sigmoid - nonlinear (one, two, or asynchronous), time-varying

grid-size (coafrse characteristics) more variables) - local mode and propagating

and fine grid, etc) - sigmoid (including memoryless mode

- equidistant and unity gain, high - delay-type - fully analog or combined with

varying grid size gain, and thresholding) - dynamic (lumped) logic (dual computing CNN)

(e.g. logarithmic - Gaussian - symmetric and - fixed template or

like in the retina) (inverse Gaussian) non-symmetric programmable template

- planar and circular - first, second and (continuously or in

- lattice (3D) higher order (e.g. one, discrete values)

two, or more capacitors) - transient-, settling-,

- with or without local oscillating-, or chaotic mode

analog memory

- with or without local logic

2



2 The CNN Universal Machine - the architecture

First, let us define the CNN. CNN is an analog cellular nonlinear dynamic
processor array characterized by the following features:

(i) the analog processors are processing continuous signals, they are continuous-time

or discrete-time signals (i.e. the input, output, and state variables are Ck functions at
least for finite intervals), the processors are basically identical (a single term of them

may vary regularly);

(ii) the processors are placed on a 3D geometric cellular grid (several 2D layers);

(iii) the interactions between the processors are mainly local, i.e. each processor is
interacting with others within a finite neighborhood (nearest neighbor is just a special

case), and mainly translation invariant defined by the cloning template (the dynamics of
a given interaction may be a design parameter);

(iv) the mode of operation may be: transient, equilibrium, periodic, chaotic, or

combined with logic (without A-D conversion!).

In the CNN Universal Machine such a CNN array is embedded in an analogic

(analog and logic) stored program architecture. This architecture is shown in Figure 1.

In addition to the CNN nucleus, each cell contains several locai analog memory

cells (LAM) and a single local logic memory (LLM). LAM cell values are combined by a

local analog output unit (LAOU) while the logic register values are combined by a local
logic unit (LLU). The local communication and control unit (LCCU) provides the control

of the cell configuration and the analog and logic instruction communication. Some
parts of this cell have already been implemented in various CNN circuits.

The entire cell array is controlled by a global analogic programming unit

(GAPU) containing an analog program register (APR), a logic program register (LPR), a

switch configuration register (SCR), and a global analogic control unit (GACU). This unit

is a key for implementing the analog stored program. If the Universal CNN Machine is
implemented in a single chip, the CNN universal chip, several of them can be used in

an array partitioning the GAPU between the chips and a central GAPU. Then, the APR

could be divided, to form an analog cache register.

It can be shown that the local regular connectivity is essential for implementing

a stored program analogic algorithm on silicon.

3



LPL

Rcnl wehefu tepts[]wiMc nucleus bM

GAUsin varousl simploge.dnmccrut.srcsos eealtpso ata

GACU

equati n t[1,2 anwte wave eqatoundepae [7,84,7] arehsch dexapes. Woe ceantuses the

generalized Chua's circuit of Figure 2 as a processor (the nonlinear resistor is the so

called Chua's diode). Even if the interactions are represented by a simple resistive grid,

and just a part of the circuit is used, unique phenomena can be generated [61].
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As to the silicon implementation of the inductor, several equivalent circuits can
be used. One possibility is the use of a gyrator which can simply be implemented by

using two voltage controlled current sources (or transconductances, used extensively
in the CNN and general neural network implementations).

The CNN Universal Machine's analogic programs define a new world of

analogic (dual) type of software. All these functionalities can be implemented by using

the CNN Workstation [79]. The special language for defining these algorithms contains

some analog instructions as well.

iR

Fý +

V,.
L 2C2 Cl C VR

L N2
- - -

FigL-e 2

Beside the local connections, without increasing the connection density, some
global wires can also be used in the CNN Universal Machine. Local and global

dynamics are interacting in this way.
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- Abstract. Based on two classes of equi- and desired output image patterns. By
librium equations, a design method for learning from examples, it is assumed that,
reciprocal Cellular Neural Networks is after training, the network correctly pro-
presented. The local rules defining the cesses inputs which have never been shown
task to be accomplished by the network before. Unfortunately, however, the pro-
are directly mapped into a set of lin- posed design method does not even guar-
ear inequalities that bound the solution antee the desired outputs for a given input
space of the network parameters for the learning set.
given problem. All points in the solu- An analytic method for designing simple
tion space guarantee the correct opera- CNNs has also been published [4]. It uses
tion of the network. A solution can be rules that explicitly describe the task to be
computed by the relaxation method for accomplished by the network. These rules
solving sets of linear inequalities, establish a set of inequalities that must be

satisfied by the network parameters. A 3o-

lution of this set of inequalities guarantees
1 Introduction correct operation of the network. Neverthe-

less, it may be difficult to construct such aA Cellular Neural Network (CNN) performs set of inequalities for a given task, and for

a nonlinear mapping of an input onto anseofiqultsfragvntskadfr
output [1,n2i .The mappingo ins completey some cases the method is too restrictive, re-
output [1, 2]. The mapping is completely sulting in an empty solution space.
defined by the space-invariant network c a - Our design method maps the rules that
rameters. Each application such as, e.g., define the application directly into a set of
edge extraction or shadowing needs its own linear inequalities using two classes of equi-
parameter values to process the input to the librium equations: The first class contains
desired output. Locally connected CNNs desired equilibrium states, the second con-
with space-invariant parameters are able to tains forbidden ones. Any point in the so-
process tasks which can completely be de- lution space bounded by the set of linear
scribed by local rules involving only neigh- inequalities guarantees correct operation of
bouring cells. the network for a given task. The param-

Several design methods for synthesizing eter values can be computed by the relax-
CNNs have been proposed. In [3] a training ation method for the solution of sets of lin-
rule was presented to determine the weights for thes os fi
of the network from input image patterns
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2 Desired and Forbidden a, a2 a3

Equilibrium States a4 as a6
a7 as a9

The first-order nonlinear differential equa- Table 1: Component correspondence for
tions defining the dynamics of a reciprocal vector a and template A
CNN with neighbourhood Nl(ij) (radius
equal to 1), and with binary input valuescan b writen s folows -t oo. On the other hand, because of the
can be written as follows: binary-input condition (le), [I-f,'I 1, 10 <

d + Xi a = T 7 b+c (la) r < 18, for t > 0. Thus, 7ij(t -0) =
V •" i E {-1, 1}'9 contains binary compo-

= -YT X nents ±1 corresponding to output and in-

1 < i < M, 1 < j N put values in the neighbourhood Ni(i,j) of

where cell C(i,j). 1
Let r be the set of all possible vectors -92

=T [v UT: 1] (1b) with different component values. Next let

i, 1j rd and Pf be disjoint subsets of P contain-
71 ... 7 1-9 J ing those desired and forbidden vectors d-Y9

ZT [aT bT c (1c) and I -y9, whose components correspond to
input/output combinations which are pre-

"-[a a 2 ... a9 bi b2 ... b9 c] scribed by, resp. should not appear in, a

1 specific application, i.e. a specific mapping
yij(t) =([ij(t) + 11 - Ix,,(t) - 11) (1d) function F

(piecewise-linear function) MxN

The CNN is subjected to the following re- F: {-1, 1 N -- , {1, 1 }MXN (2)
strictions: Then for all -Y' E rd, i.e. for vectors dT79 ,

Iu~Ij = 1, V i,j (le) the following inequalities formulate the de-
(binary input) sired conditions that the parameter vector

z must satisfy in order to enable the CNNa, = a9 , a2 = as (if) to settle in a desired output state:a3 = a7 , a4 = a

(symmetry condition) Tjz _> 1, for 'yj = 1 (3a)

as >1 (Ig) aTz < -I, for -ys =-- 1 (3b)

(parameter assumption)

Table 1 illustrates the correspondence be- For clarity, the shorter notation -,F has been
tween vector a and the space-invariant don- used instead of (dy9)T. 2

ing template A. On the other hand, vectors I-y99 belong-
The output values y,, of the MxN CNN ing to the set rf of forbidden combinations

converge to ±1 for t -- oo because of sym- 'The last component of vector is always
metry condition (111 (reciprocal CNN), pa- q
rameter assumption (1g) and the sigmoidal equal to unity due to 7• := 1 (see (lb)), and is

not related to input or output values.
characteristic (1d) of the nonlinear function 2 Inequalities (3) result from equations (la) and
[1]. This means, that each vector compo- (Id), and from the facts that --. = 0 and pj, I ±1
nent , 1 < r 5 9, converges to ±-1 for for t--.oo [1].
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define the following inequalities that pre- its size, i.e. on the values of constants M
vent the transient of the CNN to converge and N. The rules for edge extraction can be
to an undesired output state for a given in- stated as follows (compare with Figure 1):
put: A cell does not belong to the edge of a

YTx< 1, for "= 1 (4a) figure if
= the cell does not belong to the figure

-yz > -1, for 7yi -- 1 (4b) itself, i.e. if its input value is white
Here stands for T inequal- (or, equivalently, -1)

ities (4) and for a fixed parameter vector * the cell is in the inner part of the fig-
a, any state variable zxi that produces an ure, i.e. if its input value is black (or
undesired output yiS = ±1 is pushed back equivalently 1) and the input values of
from the outer parts of the piecewise-linear cells C(i-1,j), C(ij-1), C(i,j+l)
function into the linear region Izij < 1 in and C(i + 1,j) are also black.
order to let the CNN search for another These rules deal only with five cells, namely
equilibrium state. If the resulting vector the center cell and the off-diagonal cells
7ij of this new equilibrium state also be- within the neighbourhood. For the center
longs to r' then the state variable is pushed cell the input and the output values are re-
back again until a desired equilibrium state quired, for the off-diagonal cells only the in-
is reached. Inequalities (3) assure that such put value is needed (see Table 2). Moreover,
an equilibrium state exists.

In summary, inequalities (3) and (4) to- uqiT
gether with (1g) and symmetry condition [ I-i2--I
(1f) bound the solution space of parame- u4 Us u.
ter vector x. The correct operation of the uJ
CNN for any point within the solution space
is guaranteed by this procedure. The ele- Table 2: inputs and the output involved in
ments of rd and rf can directly be drived the edge-extraction problem
from the local rules defining F, as demon- the space symmetry of the edge-extractionstrated by the next example. h pc ymtyo h deetato

problem allows us to weight the off-diago-

nal input values with the same parameter
3 Example: b#. Thus, a reduced parameter vector is

Edge Extraction sufficient for the correct operation of the
network:

The task of ext;acting the edge of a figure XT -[as b# b5 c.], (5a)
can be completely described by local rules where
which only involve cells C(k, 1) belonging to b#= b2 = b4 = b6 = 48

the corresponding neighbourhood Ni(ij). Vectors -yj and -y,9 are modified and now
This is essential because applications which contain only the needed input and output
need the direct influence of a cell C(k, 1) V values having again the same size as param-
NI(ij) on C(ij) cannot be realized with eter vector x:
the common definition (1) of a CNN. The T [ 0 i i +- +j v
advantage of using local rules for the de- = +ii 13 1 17 14

scription of the task is that the correct op- = ij T -5b)
eration of the network does not depend on = 0 72 73 (5b)
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(a) (b)

Figure 1: (a) input pattern and
(b) the desired output pattern for edge extraction in a 16x16 layer

Vector component *-1' corresponds to the
output of cell. C(i, j), *-y-' contains its input 7V2 (fo {-2, r 0,l2s)
value, and *%" is the sum of the off-(fr crne cels
inputs around cell C(:,j). 'y3'j and *-yi' can *t'7j E {-3,-1, 1, 3 } (6b)
take on values ±1, i.e. the cell's input and (for border cells)
output are either black or white.`Y"Ef-,20,,4

Next, we have to differentiate between (fo Eete cell2,0,2,4)
cells at a corner, at the border, or in the (o etrcls
inner part of the CNN in order to comnpute Fo h is ueo h deetato
the values of vector component .*y- It is Fo h is ueo h deetato

obvius hat or n iner elliyj can take problem it follows that if the input of a cell
onbvalues -4,t -2, 0, 2,ne 4cepenin onth is white then the cell has to produce a white

on ~~~ ~ ~ ~ ee value -1,2 ,2 dpnigo the outsmof white (= -1) and black (= 1) off- output,. i.e. whenee _7 1teot
diagonal ce around cell C(i=j). For e Put ' must
ample, if C(i~j) is surrounded by white off- stateso thasto whenvr 1 (blackth input),f h
diagonal cells then =4, but if one of i
these cells is black then *-y2*' = -3+1 = -2. off-diagonal cells are all black, i.e. *,2 = 4.
For border cells, one of the elements of the From this, the set rd can be constructed in
sum %ij~+- %3+-yji +-Y~~is eobcashr a straight-forward procedure assigning to it
cell C(i~j) is surrounded only by three off-alvetr whscopntsaom
diagonal cells. For corner cells even two ele- plish one of the following conditions:
ments of this sum disappear. The following (i) Aj--
relations summarize the results: W*3=-

E( (ii) 'y = 1 A -%) 1 A
u1 : E 1 a) it E {-49-3-2-1 0, 1, 2, 3

vWe take the same twodimensional image as (iii) ' = 1 A es) = 1 A i' = 4
was used in [3] to train the network.

4The input values of the cells are added. Equation (7) shows the result.
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-2 corner cells &

=-1 inner cells-3! -1! 1! 3! -3l -1 1! 3!
] [] _] [:1] L [ ] border cells (7)

[] [ L, [ inner cells

1" can easily be constructed using the 0 -0.2615 0
disjoint property of both sets rd and r! and -0.2615 1.2436 1 --0.2615
the fact that all other vectors -/?? whose. 0 -0.2615 0
components do not accomplish any of the cloning template B
conditions (i) - (iii) lead to forbidden equi-
librium states: 0 0 0

0 1.0559 0
rf = r\rd (8) 0 0 0

cloning template A
We now have all the inequalities that

bound the solution space of parameter vec- I = -0.3419
tor X E R4 such that any point in the solu- constant current source
tion space guarantees the correct operation
of the CNN for edge extraction, indepen- Table 3: Edge Extraction: same parameter
dently of the sizes M and N and the initial set as in equation (9) ordered in

state-. A solution that satisfies inequali- template notation
ties (1g), (3) and (4) can be computed by
the relaxation method for solving sets of lin- 4 Conclusions
ear inequalities [3]. The following equation
gives a solution of the parameter vector a An exact design method for reciprocal Cel-
for the edge-extraction problem: lular Neural Networks with binary inputs

has been presented. Given an application,
1.0559 two disjoint sets of vectors can be derived_ -0.2615I
1.2436 (9) directly from the local rules that define the

task to be accomplished by the network.
-0.3419J The sets contain desired and forbidden in-

put/output combinations, resp., which lead
Table 3 orders the same result in template to appropriate inequalities bounding the pa-
notation. rameter space. Any point in the solution

'The local rules for edge extraction do not in- space, i.e. any parameter set that satisfies
volve the initial state of the CNN. all inequalities, guarantees the correct op-
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eration of the CNN for the given task.
The exact design method has been demon-

strated in detail for the problem of edge ex-
traction. A CNN with a parameter set that
satisfies the constructed inequalities extracts
the edge of any pattern at any position in a
two-dimensional layer of arbitrary size, in-
dependently of the initial state.
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Abstract

In this paper are indroduced b .sic design methods for the class of cellular neural
networks (CNN' s) with continuous input signals. The realistic Model of CNN' s
are proposed by Chua and Yang [2, 31 and combine components of the Hopfield-Net
[8], the Cellular Automatas [131 und der Cellular Systems [14]. The CNN design
methods integrate special conditions for technical architectures with respect to real-
time implementations. Ha~ijan's polynomial solution method [5] are applied to solve
the set of linear inequalities which correspond with the CNN design.

1 Introduction

A CNN architecture for image processing axe marked by regular arrangement of identical
cells, which are shown as rectangular 5 x 8 CNN with 40 cells ck for 1 < k < 40 left in
figure 1. All cells characterize an identical implementation, that is chosen as a discret-time
system [1, 4, 6, 11] and follows as signal flow graph right in figure 1.

Inputs uk(t) Cells ck Outputs y'(t)

Figure 1: Arrangement of cells and signal flow graph

All cells performe weighted sums of local in- and output signals which delayed by a
discrete-time tA and pass the results throtugh nonlinearities into the new output signals.
Figure 2 shows all vector elementes of input, output and weight connections, which are
identical constructed around all cells ck.

Figure 2: Arrangement of vector elementes
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The following table 1 presents the denominations of all quantities.

IM = {-1, 0, +1} := {white, grey, black}, 0 E IN: feedback connections,
P E IN : feedforward connections, uk(t) E [-1, +1] : input signal of ck,
Yk(t) E IM : output signal of ck, Yjb(t) E IMP : feedback vector of ck,

u~1 (t) E [-1, +1]° : feedforward vector of ck, v I (t) (ykI (t), UkJ(t), 1) E ,fO+P+I,
afb(t) E IRP :feedback weights, bff(t) E IRP : feedforward weights,
I(t) E IR: Source and wT(t) := (a Tb(t),b T (t),I(t)) E IRO+P+i.

Table 1: The denominations of all quantities

The positions of the vector elements for the in-, outputs and the constant 1 show figure
2 and table 1. The same form for the temporal variable weights or "Cloning Template"
of the in-, outputs and source follows also in figure 2 and table 1, which is identical for
all cells. The equations (1, 2, 3 and 4) represent the mathematical description of the
dynamical behaviour of all cells in all discrete-times t with t E {0, lta, 2 tA ... }, t A E IR+.
The sums sk(t) of the weighted in- and outputs and source

sk(t) = afb (t)yfb(t) + bTjf(t)ukf(t) + 1(t) (1)

are transformed with the vectors of in- and ou-4 us vk(i) and weights w(t) in the sums
k(t) = wT(t)vk(t). (2)

The delayed step tA of the sums are "ioted down with the states xk(t) in equation (3).

xk(t) = Sk( -_ tA) (3)

The nonlinearities perform the states xk(t) into the outputs and are shown in figure 3.

- 1 V -3<xk(t)<-1

yk(t) = V -1 < xk(t) < +1 (4)
1 V +1 < zxk(t) < +3.

YA (t)

0

Figure 3: Stepped nonlinearity

The iteration equation (5) arise out of the equations(3 and 4), which calculates the present
outputs with the past in- and outputs and cloning templats.

1)V 3< l(t - tA) < -1
=~) V _I < sk(t-_ ta) < +1 (5)

S+1 V +1 < sk(t tA) < +3.

The bounds of the outputs [9] follow with table 1 und equation (4)

V vk(t-tA) E IR0 +'+' =. yk(t) E IM. (6)

The CNN' s perform out of all initial values uk(0), yk(0), w(O) with all sequences of oper-
ations w(t) and inputs uk(t) a sequence of outputs yk(t).
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2 Design

The application of CNN' s for image processing are determined by the CNN design meth-
ods for the deterinination [7, 10, 11, 12, 15] of the temporal sequence of local operations
w(t). All values of weights wi(t), sums sk(t) and states xk(t) are restricted into intervals.

Iwi(t) I _ 2, Isk(t)I = iXk(t)i < 3. (7)

The start points of the design form the explicite iteration equation (5) and equation (2)
which characterize the relation between the identical local connected inputs uk(t), outputs
yk(t) and the cloning templates w(t).

For a given temporal sequence of in- and outputs inspects the following design method
the existence of the sequence of cloning templates which perform the given sequence of
outputs. For this purpose are estimated in equation (5) the linear sums sk(t - tA), look at
the design method (8), between their extreme points with respect to the following output
yk(t) by linear inequalities for all cells.

if yk(t) = -1 =* -3 < sk(t _ tA) < -1

then
v k-(t-ta)w(t tA) > -3 vk-T(t _tA)W(t--ta,) < -- 1

if yk(t) = 0 = -1 < sk(t _ tA) < +1

then (8)
vkT(t - tA)W(t - tA) > -1 vkTr(t - tA)W(t - tA) < +1

if yk(t) = +1 # +1 < sk(t _ ta) < +3

then
vkr(t -tA)W(t - t,)> +1 VkT(t -tA)w(t- - t) < +3

The further technique are introduced by a visual example. The detection of black-white
differences in images can be solved by a feedforward and a feedback connection vkr(t) =

(uk(t), yk(t)). The two images are assigned to the inputs uk(t - ta) and outputs yk(t - t&)
and the differences are assigned to the next outputs yk(t). Figure 4 shows all transients
and Table 2 shows their values.

E .- E, W E M -S mnEE

Figure 4: Transients

1 (-1,-i) -1 113 (+1,-I) I 0
2 (-1,+1) 0 4 (+1,+1) +1

Table 2: In- und output values of differences

The design methods (8) and restrictions (7) lead to the inequalities (9) with the set of
solutions in figure 8.

+w1 + w 2 > +1
+IVI - W2 > -1 (9)
"-WI - T,2 > +1
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yk(t) _

r --
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Figure 5

The intervals of input, output and sum values va, y& and sa, see figure 5 , are shown in
equation (10) for yk(t) = 0.

if yk(t)=O=-y± ya -1+sA <sk(t-tA)< +l-SA
then (10)
(vkT(t - ta) + va)w(t - tA) > -1 + Sa, (vkT(t - tA) ± VA)W(t - ta) < +1 - S,

All combinations of values, see figure 6, lead to a continuous set of linear inequalities in
figure 7. This set of solutions can be estimated by the finit number of extreme inequalities.
The number is 2°+p+1 and the combinations follows with a binary system from 0 to 2°+P.

W2 W2

\4 X \

Figure 6 Figure 7
Figure 9 shows the solutions of (9) which are estimated by the inequalities of figure 7.

W2

iW1

Figure 8 Figure 9
A stabil technical implementation [10] of realistic cloning template leads to a central

point of the maximal ball with radius r within the set of solutions in figure 9. This
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cloning template is stabil for all defects of the cloning template which are lower than the
maximal radius.

v Tw++ Ivv r (11)

For the determination of the maximal ball and radius are introduced parameter [10 and
11] in all inequatities which are present in equation (11, 12).

vkT(t - tA)W(t - tA) + (>k+ kV r > 0V-k, < > I V I -> (12)
< E JR

All inequalitics of discrete step for a parameter build a set of inequalities (13), which can
be solved by Ha~ijan's polynomial solution method [5].

T a

a.X <X,< (13)

The polynomial solution method constructs a sequence a of ellipses which approximate
the set of solutions and present a solution by the characteristic central point Xa and
tranformation matrix 00. The method are denoted in the following

step 0: a =0 ,X0 = 0, 0° = (O+P+ 1)22E
step 1: if V~r E {1,... ,I}a'XG <I3,

then stop with solution Xa
else a XG > /3

. = 8ora, 6 1 = Ci X4--

ste 2 X+1 = a" _ (I-+130-, =Ra+ [6av- •1(1•s
step 2: X'+ -x

0  (1-A0I)S,0+ 2 1~)pc 21)fuwc
a = a+1 goto steplI

ir,II, o,A E IN; 8,r, E IR; , E IRS; 08 E IR"\xA.

If a solution exist for every discrete step t in all sets of inequalities (12 and 13) then all
solutions build the sequence of cloning templats w(t).
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Abstract

This paper describes general methods of designing a discrete-time cellular
neural network implementing an arbitrary Boolean function defined on the
r-neighbourhood. This is achieved by operating the network with
time-variant templates as a cellular automaton that processes only binary
inputs. These methods are suitalle for solving local tasks. As an example,
testing minimal distances is discussed.

1. INTRODUCTION

Discrete-time cellular neural network as introduced in [3] is a large scale
nonlinear circuit, composed of locally connected cells. It has a simple
nonlinear circuit at each node and is very well suited for VLSI
implementations.

In this paper we restrict ourselves to binary valued operations and study
how to implement local Boolean functions using DTCNNs. We prove that every
Boolean function defined on the r-neighbourhood can be implemented in a
single layer DTCNN with time-variant templates. This is achieved by
operating the network as a cellular automaton that processes only binary
inputs. General methods for designing DTCNNs implementing Boolean functions
are presented. They are based on a digital convolution. In every iteration
step the output state of any cell can be changed only if the input values
within the r-neighbourhood match exactly the given pattern, stored in the
control operator. The coefficients of control operator are restricted to
the set {-i,0,i}, while the feedback operator consists of self-feedback
only.

Presented methods are suitable ior solving local tasks. In the second part
of the paper a new application of DTCNN is described. Testing distances
between objects for an arbitrary value of the minimal distance is performed
by a two-layer network with time-variant templates.

2. NOTATIONS

Definition 1: Discrete-time cellular neural network (DTCNN) using
time-variant templates is defined by the following recursive algorithm:

for k>O d b "d .c
xC(k) = ac(k)'y (k-1) + bc(k) + i(k) (1)

ye(k) f(x 0 (k)) = I for xc(k)&O (2)
-1 for xC(k)<O

0-7803-0875-1/92 $3.00Q.19921EEE
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In (1) the Einstein summation convention [7] is used. For its convenience
it will be used throughout the paper.

The feedback coefficients ac(k), the control coefficients bc(k) and the
d d

thresholds ic(k) are real parameters. The initial state yc(O), the output

state after the kth iteration yC(k) and the input uc of a cell c are binary
valued.

The cells of the network form a regular grid. The cells are only locally
connected. By the definition the template coefficients are translationally
invariant. A single template for given k is called a snapshot template.

This definition differs from the one given in [2] in that the input values
u are assumed to be constant, while originally they have beentime-variant.

Let r be a constant integer value. Let us consider a cell c. The
r-neighbourhood of the cell c is defined as the set of all cells within the
distance r, with respect to the 'maximum' metric. It is denoted by N (c).

Let M=M(r) be the cardinality of N (c). For each cell its r-neighbourhoodr

contains M(r)=(2r+l)I cells, when restricting to square grids.
Let d Id2 .... ,d denote the cells belonging to N (c). U :=(u1 ,...,uM) is

12 Hr c

the vector of the inputs of all cells within the r-neighbourhood of the
cell c.

Let S be the set of all possible binary input patterns within N (c):
r

S = {u=(u I,...uH)6{-l, +l}M} (3)

Definition 2: Let g be an arbitrary Boolean function defined on S:

g: S -. {-I,+1}

where +1 is interpreted as true and --1 as false.
We say that a DTCNN implements function g if there exists k LO such that

0
Vc VU ES Vkzk yC(k)=g(U

3. DESIGNING OF DTCNN PERFORMING BOOLEAN FUNCTIONS

Two methods of designing DTCNNs implementing an arbitrary Boolean function
can be proposed.

Method 1: In order to implement an arbitrary Boolean function perform the

following two steps:

Step 1: Let us write the Boolean function g in a sum-of-products form:

g(u 1  
.... ,u') = (u 1 ' 1A... AuIIW(1))v.. .v(un'^A... AUn,(n) (4)

We have n products. The kth product has w(k) factors.

uk'j denotes one of the variables u ,... um, which may be negated.

Step 2: Let n be the number of snapshot templates.

Vc VkE{L ... ,n)
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yC (0)=-1, ic (lk)=+l,

aC(k)=w(k), aC(k)=O for c~d,
c d

for a=d EN (c)={d 1 d..... d :s th

bC(k)=+1 if u5 Is present in the kth product of (4)
d

bC(k)=-1 if u is present in the kth productd

bd(k)=0 if u5 and u are not present in the kth productd
for dEN (c) : bc(k)=0.

r d
The binary valued input pattern is the information to be processed. n
iterations with tirme-variant templates should be performed. Then we can
either stop processing or we can continue with the last snapshot template.

Proof of the correctness of method 1:
First let us consider an arbitrary cell c. any integer k{.... a} and
several cases depending on the value of yC(k-l) and the input vector u.

Case 1: yc(k-l)=+i

aC(k)-yd(k-l) + ic(k) = w + 1
d k

Because exactly w elements of bc(k) (for given c) are equal to +1 or -1
k d

and other elements are 0 then:
d, -(k)11d = W

d d k
Hence xc(k)>0 and yc(k)=+l.

Case 2: yC(k-l)=-l and Vd : bC(k)=ud or bc(k)=O
d d

aC(k).y (k-l) + ic(k) = -w + 1
d k
bck) = Ib Ck)Il-d

Hence yc(k)=f(- +l+w ) = +I.
k k

Case 3: yC(k-1)=-1 and 3d : ud.Ab (k)=0
d

b C).u Ib'(k)I.:d -2 w - 2
xC~k) = a(k)-ydýk- ) . Uk +c b(k) .ud -- W +!+w-2=-

d d kxC~~~k)b aCk d(-)+i(k) +' bCc)u S W + -'I - 2 w - 2 .
d d k

In this case yC(k)=-l.

It effects from cases 1-3 that a transition from +1 to -1 Is not allowed
and a transition from -I to +1 occurs in step k only if the input pattern
in the r-nelghbourhood exactly matches the non-zero values of the matrix
b(k). The function g is written in the sum-of-products form and every
iteration step computes one product of this sum.

As yc(G)=-I then yC(n)=+1 if and only if 3ke{l, ... ,n} such that

Vd : bc(k)=ud or bc (k)=O.
d d

Because for every ka-n yC(k)=yC(n), the function g is implemented properly.

Method 2: Let us write function g In a product-of-sums form:

g(u',. .,u1) = (U uv...vu1H(1) )A. .. .^A(un' v. Vu ) (5)
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All parameters of the network should be the same as in method 1 with the
following differences: ic(k)=-I (instead of +1), yc(O)=+1 (instead of -1).

Proof for method 2 is dual to that of method 1.

Remark: Both methods can be used for the implementation of an arbitrary
Boolean function. This can be seen by noting that any Boolean function can
be written in both the sum-of-products and the product-of-sums forms [4).
The methods 1 and 2 usually solve the same problem with the different
complexity.

Example: We want to detect horizontal and vertical black lines of length
greater than two pixels. This is equivalent to detecting all black pixels
which have their horizontally adjacent pixels black or which have their
vertically adjacent pixels black.

This function can be presented in the sum-of-products form as:

g(ul ...,u ) = (u^u2Au S)v(u4Au5Au6)

Method 1 leeds to the following solution: n=2, Vc yC(O)=-l, u=image,

0 1 0 0 0 0
a(1)=a(2)=L4j], b(1)= 0 1 0 , b(2)= 1 1 1 , i(1)=i(2)=+1

0 1 0 0 0 0

4. TESTING MINIMAL DISTANCES

The task is to detect black objects, which are closer then a distance of k
pixels, where k is a given constant integer value. The solution of this
problem can be used in layout design for checking if any two objects are
too close to each other.

The solution for k=2 described in [5] is based on extracting black pixels
having a white neighbour in a given direction and a black second neighbour
in the same direction. It can be done with 2-neighbourhood templates. This
solution allows to extract pixels in one direction. To be able to solve
this problem for four directions it was proposed to process simultaneously
but separately in four direction and then perform the OR function on the
outputs.

In this paper we use DTCNN architecture with time-variant templates for
solving the problem for an arbitrary value of minimal distance. Each
snapshot template is equivalent to one layer of hardware (5] while the OR
function is performed at the same time by choosing templates properly.

Before the solution of that problem is given some definitions have to be
introduced.

Let the distance between two pixels w,z be defined by the 'maximum' metric:

d(w, z): =max IwzI, lw-zt}1

where w I,zI are the integer coordinates of the pixels.

Definition 3: Two black pixels w and z are called k-separated, if their
distance is k and they cannot be connected by a black four-connected path
completely enclosed in the rectangle determined by w and z, where:

o the four-connected path is a sequence of orthogonally adjacent pixels
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(such pixels are also called four-connected pixels [21),
o the rectangle determined by w and z is the minimal rectangle containing

w and z with horizontal and vertical sides.

Detection of 1-separated pixels
The task is to find all 1-separated pixels and mark their positions on the

grid. The solution is based on searching for white pixels which have

1-separated black neighbours. This problem can be represented in the form
of a Boolean function as:

f(u .... U )=(U5AU6AU8AU )v(uSAu2Au 3)V(u5Au2Au4Au )V(u5AuAu4Au7

With method I, we can construct the following DTCNN:
n=4, y(O)=-l, u=image, a(k)=4, i(k)=1 for every ke{I..4)

0 00 0 1 -1 -1 1 0 00 0
b(l)= 0 -1 1 , b(2)= 0 -1 1 , b(3)= 1 -1 0 , b(4)= 1 -1 0

0 1 -1 0 0 0 0 00 -1 1 0

In this solution each detected pair of 1-separated pixels is marked by two
black pixels in the output. We can modify the netvlrk in the following way:

ri=2, the templates for k=1,2 are the same and sti% all 1-separated pixels
are detected.

Similar networks can be used for detection of 2 and 3-separated pixels.
When searching for 2-separated pixels we need 8 snapshot templates and

1-neighbourhood. For detection of 3-separated pixels we need 12 snapshot

templates and 2-neighbourhood of matrix b.

Detection of k-separated pixels

We show how to use the solution for k=2,3 to build a 2-layer DTCNN which

detects k-separated pixels for every k. The idea is as fellows:

j: =2;
repeat

detect 2-separated pixels; equivalent to detection of j-separated pixels}

detect 3-separated pixels;{equiv. to detection of (j+l)-separated pixels)

increase objects by one pixel in every direction;
until (j>k);

Increasing objects rely on converting white pixels to black if any of their
eight-connected neighbours is black. The DTCNN performing this task is
described in [1]. Increasing objects can reduce the distance between

objects by two, then we are sure that no too distant objects are joined ard
we do not lose any k-separated pixels, because earlier we have checked the
problem for k=2,3.

The described algorithm can be realized in a 2-layer DTCNN. The first layer
has a constant template for increasing objects. The second one is a lay'r
with cyclic templates (the cycle length being 20). The first 8 snapshot
templates solve the problem for k=2, the next 12 for k=3. The first layer
should be clocked 20 times slower then the second one and the clocks must
have different phases. Computation of the result for the first layer must
be completed before computation in the second layer starts. To avoid this
and make the timing requirements not so strong we can add one snapshot
template to the second layer which does not change the oLtput states of the

cells (a=l, b=O, I=0) and during this 2 1st iteration perform one iteration
in the first layer.
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5. CONCLUSIONS

Using presented methods we are capable of implementing any local Boolean
function defined on the r-neighbourhood. For that we need a single-layer
DTCNN with time-variant templates, where control operator is defined on the
r-neighbourhood and the feedback operator consists of self-feedback only.
We are able to realize both the sum-of-products (method 1) and the
product-of-sums (method 2) form of any Boolean function, and we choose the
shorter one. These methods can be used for hexagonal grids without any
modifications.
Several examples are demonstrated and discussed. By means of method 1 the
problem of testing minimal distances is solved. The solutions for the case
of the 'maximum' metric and k=1,2,3 are described. For that the single
layer CNN with time-variant templates is required. A two-layer structure,
which solves that problem for arbitrary value of k, is also described. For
that application the 2-neighbourhood of the control operator and the
0-neighbourhood of the feedback operator are sufficient. Similar networks
can be used, when searching for white pixels k-separated by black ones. The
solution for that problem can be also utilized in layout design for
checking is there are any too thin black objects on the grid. The solution
for the Manhattan metric tas also been found.
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Template Synthesis of Cellular Neural Networks for Information
Coding and Decoding

Mamoru Tanaka* K. R. Crounsct Tamas Roska

Abstract

This paper describes the use of analog Cellular Neural Networks (CNNs) for information coding
and decoding - especially for the case of moving images. The dynamics of the coding (C-) and
decoding (D-) CNN. are described by generalized CNN state equations. The C-CNN encodes the
image by structural compression and hofltoing. The D-CNN decodes the received data through a
reconstruction process so as to almost recognize the original input to the C-CNN. The importance of
our compression and quantization technique lies in the ability to make the computations with only
local connections.

A dynamic quantization is performed in the C-CNN to decide the binary value of each pixel
from the neighboring values. In order to reduce the error between the original gray image and
reconstructed halftone image, the template synthesis problem is addressed from the viewpoint of
energy minimization.

The structural compression template synthesis problem is discussed from the viewpoints of topo-
logical and regularization theories. The structurally compressed image is regenerated in the D-CNN
by a dynamic current ditribution.

The communicatiou system in w1ich the C- and D-CNNs are embedded consists of a differential
transmitter with an internal receiver model in the feedback loop. Examples of the performance of
the complete system are given.

1 Introduction

The Cellular Neural Network (CNN) first proposed by L. 0. Chua and L. Yang [1] [2] is a locally intercon-
nected, large-scale nonlinear analog neural network which has applications to many practical problems.
A generalization of the CNN paradigm was made by T. Roska and L. 0. Chua which covers a broad class
of programmable multidimensional cellular analog processing arrays [31 [4]. Of special interest here, it
has been shown that the nonlinear dynamics of the analog CNN can perform image halfloning [5].

1.1 System Summary

This paper describes the use of the CNN for data coding and decoding for the purposes of lossy fixed-
rate compression and quantization. In a communication system, the CNN would be used in both the
transmitter and receiver. It will be shown how the technique can be applied to the transmission of both
still and moving images.

Two distinct compression techniques were developed which only require local connections for compu-
tation. As shown in the Figure 1, the coding (C-) and decoding (D-) CNNs implement these encoding-
decoding pairs.

Two types of compression are performed in the C-CNN: structural compreszion (S) and dynamic
quantization (H). The C-CNN first performs the structural compression which locally maps the input
gray image to a smaller gray image. The main work of the C-CNN is a dynamic quantization by which
the gray image is mapped to a binary image of the same size for digital transmission. The dynamic
quantization is done by halftoning.

At the receiving end, the D-CNN attempts to regenerate the original image as closely as possible. The
inverse halftoning operation (R1-) converts the received binary image back to gray scale. The decoding

"Dept. of Electrasucs and Electrical Engr., Sophia Univ., Tokyo
tDept. of Electrical Engineering and Computer Science, Universty of California at Berkeley
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Figure 1: A block diagram of the complete communication system is shown with the functions performed
by the C- and D-CNNs. The difference between the current acquired image u(n) and the image on
display at the receiver u*(n - 1) is sent to the C-CNN. The C-CNN consists of two functional blocks,
the structural compression S and the halftoning H. Halftoning plays a dual role in compression and
quantization of the data for binary transmission. The D-CNN attempts to invert the halftone A-1 and
structural compression §-1. Finally, the difference image is added to the one currently on display.

of structural compression (§-1) is done by a dynamic current distribution which maps the image back to
the original dimensions.

The first compression coding-decoding pair is 8tructural compression and the corresponding decoding
done by current regularization. The structural compression is done in a manner similar to syndrome error
coding [6]. The novel current-type CNN is used to perform this compression. The current-type CNN can
be written as a special version of the CNN equations.

The second type of compression is dynamic quntization which is performed by halftoning the image.
Halftoning quantizes each pixel of the image to a binary value. Therefore, halftoning can simultaneously
be considered both a form of quartization and fixed-rate image compression. In the usual situation, the 1
bit/pixel will be allocated in a manner that will be a trade-off between gray level and edge preservation.
In regions of the image with abwly changing gray levels the algorithm will try tc match the spatial density
of bits to that of the local gray level. The larger the constant region the more accurately the density
can be matched. However, when a small object or fine structure occurs in a region, the bits in that area
should be used to preserve its presence. Doing so will be at the expense of accurate preservation of the
gray level of the object. Halftoning is therefore a very natural type of compression where the spatial
information density is assumed to be constant.

The system in which the C- and D-CNNs are embedded consists of a differential transmitter with
a local receiver model in the feedback loop. When transmitting moving images, features in motion are
quickly rendered while detail accumulates in stationary areas. When transmitting a still image, the first
frame will contain a recognizable image quickly with detail and quantization noise reduction supplied
during subsequent transmissions.

In such an arrangement, it can be shown that the error of successive transmissions does not accumulate,
in the following sense:

Let CV,, = (S§-H 1-XHS). be the codi-ig and decoding done on image n. By expanding one level of
recursion in the block diagram, we can write

u*(n + 1) = CDn+l(u(n + 1) - u'(n- 1)- CVft(u(n) - u*(n- 1))) + u'(n- 1) + CVL(u(n) - u*(n- 1))

Now, if the last transmission was perfect, i.e. CD,+,. = Identity, then u*(n + 1) = u(n + 1) with no
accumulated error.

1.2 The CNN

A Cellular Neural Network (CNN), as first proposed in [1], is a continuous time neural network with
diameter-limited local interconnections and a unity-gain piecewise linear approximation to the standard
sigmoidal output function. The 'neurons' are placed in a regular array and 'synaptic' connections are
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allowed only locally. The local nature of the interconnections are critical when considering VLSI imple-
mentation.

It is convenient for us to write the state equations in convolution form [1]: Let u, x, y be the M x
N input, state, and output gray scale images respectively, which are assumed to be zero outside of
their support. Let TA and TB be functions such that TA,TB 7:7 -- IR with (TA)ij,(TB)ij =
(T,)-j,-i,(TB)-i,--j and (TA)jj,(TB)ij = 0 for 11(ij)lI0 <_ r, some small neighborhood radius. Let
I be a real constant. The symmetric space-invariant Cellular Neural Network can be described by the
following state and output equations:

d
"= -zi(t) + (TA * y(t))ij + (TB * u)i. + I (1)

y,j(t) = (2)

where f: ý-4 (lz+11- 11), xEIR.
The functions TA and TB are called cloning templates and can be considered 2r + 1 x 2r + 1 matrices.

The condition (TA)ij = (TA)_i,_j is called template symmetry. An even stronger condition on the
templates is isotropy. For isotropy, the template must satisfy (TA)ij = (TA)k,, for (i,j) and (k, 1) the
same L2 distance from the origin. This condition implies template symmetry and is useful in halftoning
applications.

We will often discuss the CNN first in matrix-vector form [3]. Let A and B be MN x MN matrices
representing the convolutions. They will be of the form block Toeplitz with Toeplitz blocks. Let I be a
real constant. The Cellular Neural Network can be described by the following state and output equations:

dt
T-x(t) = -x(t) +-Ay(t)+Bu+i (3)

y(t) = f(x(t)) (4)

1.3 Outline of Paper

In Section 2 the theory behind structural compression is explained. In Section 3 the specifics of halftoning
and inverse halftoning are explained from the viewpoint of energy minimization. Section 4 puts the two
types of compression together into CNN equations. Finally, in Section 5 we present the techniques and
results of simulation to demonstrate the performance of the end-to-end system when using moving images.

2 Structural Compression

The first type of local compression we will consider is structural compression. We will attempt to take
advantage of spatial redundancy in an image by collapsing the image support onto a smaller grid.

2.1 Compression

To simplify the discussion, consider the transmission of a fixed frame of a still image, that is, u*(n-1) = 0.
To perform structural compression, the input u(n) is applied to the links of a graph. At each node, the
values on the links connected to that node are summed to produce the output s(n). If I is the number of
links and r is the number of nodes in the graph, the compression ratio will be E.

The degree of compression obtained is determined by the topology of the graph used. Graphs which
tile the plane in a regular way are the most convenient. One possibility is the regular square grid, as
shown in Figure 2 which has has two links for every node. Another is the hexagonal grid which has three
links for every two nodes.

It is straightforward to implement this method with a circuit by only using local connections, as shown
in Figure 2. On each link of the graph, a current source is placed representing the input at that location.
In practice this may be the current generated by a photosensor. Then, by KCL, the current leaving the
node on the output line is the sum of input currents.

Let S be the r x I incidence matrix which represents the compression network. Then, the compression
can be represented by the linear transformation s(n) = Su(n) where s(n) is the syndrome that will be
sent to the halftoning network.
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Figure 2: A small section of the encoding (left) and decoding (right) circuits for structural compression.
In the encoding network the input is mapped onto the links as current sources. The output current at
each node is sent to the haiftoning network. One node of the decoding network for dynamic current
distribution is shown. Intuitively, the network is reversing the process of encoding by injecting the
received currents into the resistive grid. The resistors ensure that the least norm solution is obtained. It
is clear that the self conductance G is required since the sum of the received syndrome values will not in
general be zero and allows for some current to leak out. The output is the current through the resistors.

2.2 Reconstruction

The problem at the receiving end is to find an appropriate inversion. For this discussion, we assume that
the halftoning and transmission are losslesa so that s (ii) = s(n)

The reconstruction we wili pursue here is the standard pseudo-inverse given by ST"(SST)- 1 . Thi,
would give the u'(n) with least norm such that s'(n) = Su'(n). Unfortunatly, since S is an incidence
matrix, it is singular, having a single zero eigenvalue corresponding to the constant eigenvector.

To correct for the singularity, we define S -• =S'(G + SS~T)- where G is a small multiple of identity.
Since SS' is positive aema-deflnite, G + SSTr will be positive definite and therefore invertible.

In general, the pseudo-inverse just defined is not represented by a locally connected network. However,
consider the feedback network defined by

d .

di (t = -(G+SST')x'(i) + s(n) (5)

u'() = STx'() (6)

It can be seen to have the appropriate equilibrium u'(oo) = -1 s'(n). Note that stability is assured by

the positive definiteness of G + SST .
Now, this is exactly the dynamic system which is obtained by the resistive grid shown in Figure 2.

The connections are all local and of the same form as the compression network. The system could also
be implemented as a standard CNN with connection radins 2r, + 1.

3 Halftone Compression and Quantization

The nonlinear operation performed by the H-CNN is dreermin qganlazalion by which the output of each
neuron becomes a binary value. This operation can be formulated in the same manner as bainloa.Ig
[5] [7]. We the w ou d ui to c oo se q binary image y which when reconstructed by a filter Q looks like

geneal e zro nd llow fo soe crret tolea ou. Te otputis he urrnt hrouh te rsisors



the original image s filtered by R. We will assume that Q and R are local and space-invariant. It is
convenient to use the least squares criteria as a measure of how much one image looks like another.

We will use the CNN to attempt to solve for a binary output y to minimize the generalized least-square
distortion

dist(y, s) = (Qy - Rs)T(Qy - Rs) (7)

The desired result is to have
Qy s. Rs

Let s be the input to a CNN. Now, the CNN was shown in [1] to always decrease the Lyapunov-energy
function

E(t) = -- YT(A -_ y -_ YTBs (8)

Let A be the matrix representation of the space-invariant template which can be written in the form

A = -QTQ + diag(Q T Q) + (1 + C)I

along with

Let 6 = (QTQ),,, the value along the diagonal.
The Lyapunov-energy function becomes

E(t) = T (6yT(-QTQ + (6 + C)I)y _ yTQTRs

E(t) = jyTQTQy _ YTQT Ba _ 1(6 + )yTy (9)

The -_ (6 +%)yTy term is the norm-increasing term which ensures that the steady state will be in the
saturation region giving a binary output. Note that this term is a constant for all steady state outputs,
so there is some reason to believe that it has little effect.

The first two terms are equivalent to minimizing the distortion as defined in Equation 7 since

dist(y, s) = (Qy - Rs)T(Qy - RS) = yTIQTQy _ YTQTRS _ STR.TQY + sTRTRB

The input s is a constant vector so minimizing dist(y, s) is equivalent to

minT V. VT 1 T '-yTQTQy1T T
rain 2 _y R -Q' R '2Qy = 2y'QQy - s'TRTQy (10)

So, the CNN is nearly decreasing the chosen distance function during dynamic operation. Now, since
Qy u Ra in the least squares sense we can write

s.w R-IQy

so that we can approximately recover a from y by a linear filtering operation which can be implemented
by a D-CNN. This is what was desired, so reconstruction is performed by

s" = R-IQy

As a special case, R can be chosen such that B = I and therefore only the A-template is required for
coding. Then B = QTR - I so R-2 = QT. Therefore the reconstruction can be done by

so = QTQy (11)

which has impulse response the same diameter as the A-template (in fact, Q T Q is the negative of the
A-template with the diagonal restored) and can then be implemented as single feedforward template in
the D-CNN.

As a result, the B-template is not required for halftoning and the A-template and B-template synthesis
problems can be discussed separatel/ for information coding and decoding.
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4 Putting it all Together

We will now show how the compression and reconstruction systems just described can be combined into
the CNN framework. From the block diagram and the discussion in Sections 2 and 3, it can be seen that
the transmission of image n is described by:

uC(n) = u(n) - u(n -1)

C-CNN Ax(t) = -x(I) + Ay(t) + Suc(n)
y(t = f(x())

ideal channel y*(n) = y(oo)

D-CNN f •x(u() = -Gx'())+(-S)u,(L)+Q'Qy'(n)

I. U-0) = S~g(x*(t))

u (n) = u(oo)+ u'(n - 1)

The relation to the standard CNN is clear. The C-CNN fits the model except that S is not square -
which is a minor issue. The D-CNN has a matrix multiplication at the output which does not match the
CNN model. Note that this is not a problem for the state equation since the product (-S)ST represents
a standard A-template. Also, it may be necessary to scale the inputs to the CNN so that they fall in the
assumed range.

The compression acheivable by this method is T x -b where b represents the standard number of bits
used per pixel (often b = 8).

The function g was chosen to be linear for our experiments. However, there are many possibilities
for the use of a nonlinear g. For example, it may be useful to guarantee that the ouput is in the proper
range or to enhance edges.

5 Simulation Results

A computer simulation was developed to validate and demonstrate our results. A discrete-time simulation
of the differential equations was used to simulate the C-CNN. The steady-state of the D-CNN was arrived
at through a relaxation algorithm.

For the structural compression, the square grid shown in Figure 2 was used with unity weighting. The
reconstruction was done with a self conductance of G = 1/64 and capacitance C = 1.

For halftoning, the 5 x 5 sampled Gaussian was chosen for the A-template. The choice is based on
the intuition that the importance of errors to the viewer of adjacent cells matters less with distance. The
template values used are given by

( 0.0000 -0.0104 -0.0208 -0.0104 0.0000\
-0.0104 -0.0625 -0.1042 -0.0625 -0.0104

TAc = -0.0208 -0.1042 1.0500 -0.1042 -0.0208
-0.0104 -0.0625 -0.1042 -0.0625 -0.0104

0.0000 2-0.0104 2-0.0208 -0.0104 0.0000

and

0.0000 0.0104 0.0208 0.0104 0.0000
0.0104 0.0625 0.1042 0.0625 0.0104

TAI = 0.0208 0.1042 0.1667 0.1042 0.0208
0.0104 0.0625 0.1042 0.0625 0.0104
0.0000 0.0104 0.0208 0.0104 0.0000

The system was used to encode and decode successive images of a woman in motion. The results
of applying the CNN coding and decoding are shown in Figure 3. For the experimental system, the
compression rate achieved was -L
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Figure 3: The 15th original image and the (50th, 100th, 149th) regenerated images.
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Abstract

In this paper we consider mathematical model of multi-valued neural element

which is suggested to be used as one of the alternatives of the basic CNN

element. On the basis of such CNN we offer the model of the associative

memory for storing grey-scale images. Efficient learning algorithm for

neural element and associative memory is presented in the paper.

L INTRODUCTION

CNN, introduced In [1] and having been extensively developed recently [2 and

others], became brilliant alternative to conventional computers for image

processing and recognition.

Specifically, on the basis of CNN were introduced a number of models of

associative memory and were developed the methods of solving the problems of

image recognition and filtering [2 - 41. Despite the fact that a lot of

complicated tasks are solved on the basis of CNN, still we assume that in a

great number of papers the range of processed signals is "unfairly" restricted

- either mostly binary (bipolar) or exclusively binary signals (in case of

associative memory designing) are considered. To break this restriction and

extend both CNN functionality and the range of problems that are solved on CNN
basis, we suggest using neural element based on the mathematical model of

multi-valued threshold element [5] as a basic CNN neuron, as well as an

alternative to neurons considered in [N, 6]. Proceeding from the idea that

application of this element is natural for multi-valued signals processing and

0-7803-0875-1/92 3$.00 @19921EEE
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considering the quickly convergent learning algorithm (presented below), we

believe that application of this neuron can be highly efficient. For instance,

designing cellular associative memory for storing grey-scale images and

implementation of image filtering algorithms on such CNN is absolutely natural.

Another advantage of this basic CNN neuron is convenience of its analog

(including optical) hardware implementation, since operations with complex

numbers provide "arithmetical basis" of the neuron.

II. MULTI-VALUED CNN BASIC ELEMENT

To simplify the analysis, we will consider discrete time version of the CNN,

though it is evident that all the results presented below are easily trasformed

to the continuous time case.

Suppose we have CNN of a dimension N'M. We will apply multi-valued neural

elements as basic neurons of this network. Each of these elements performs the

following transformation:

Y i(t+l) = F [ W + E wJm X(t) (1)

where Y.i - neuron state, W1j, X'j- connection weights corresponding to m-th

input of ij-th neuron and input signal value on m-th input of ij-th neuron

respectively. F(') - output function of ij-th neuron that will be defined

furtheron.

Let input signals X and output signal Y for each neuron be located in the

range 0, .., k-1, i.e. each neuron at each particular moment performs some

function of k-valued logic determined by weights W. It is evident that for byte

images k = 256.
Let's assume that each value of 0, .. , k-1 corresponds to complex number r,

j = 0, 1, ..., k-1 like this:

rj = exp(i'2•'j/k) (2)

where i is an imagenary unit. E.g., r0 = 1, r1 = E, primitive k-th power root of
2 k-ia unit, r2 = 6 2 rk- = e . Following this input and output signals for

each neuron will be coded by k-th power roots of a unit.

Let arg(Z) - argument of complex number Z ( 0 < arg(Z) < 2[ ). Now we can

determine output function F for neuron (refer to (1)). Let's define function

CSIGN(Z), Z c- C (C-Complex Numbers Field) as follows:
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CSIGN(z) = exp(i'2'Kj/k) = E , if 2x'j/k <, arg(Z) < 2710+1)/k,

CSIGN(0) = 10 = 1. ( 3)

The interpretation of the (3) may be the next. If complex plane is separated

into k equal sectors and complex number Z is located in j-th sector then

function CSIGN(Z) equals ( j = 0, 1, ..., k-1; E is a primitive k-th power

root of a unit).

Specifically CSIGN function will be used as output function F of the neuron.

In this case (1) will be transformed to:

Yi (t+l) = CSIGN [ W,• + Z, W1J X1J(t) 1.(4)
1J m

So, (4) describes dynamics of the ij-th neuron. Naturally, since Y and X are

complex numbers then weights W are complex too. In specific case when k = 2 and

weights are real, (4) will describe linear threshold element and according to

(3) CSIGN will become natural function SIGN.

III. LEARNING ALGORITHM FOR MULTI-VALUED NEURON

Further we will describe learning algorithm for multi-valued neural element.

In the case k = 2 the problem is reduced to the well-known problem of

Rosenblatt's Perceptron learning. Here we will ccnsider the case when k > 2,

paying special attention to the case k > 2.

Let k >, 2 be an arbitrary natural number. Let's have k of non-intersecting

learning subsets A = {X, X } j = 0, 1, .. k-l, X =(X 0 X 1 9

0 1
X), where X0= 1, and other coordinates take their values from the set {6 , 61,

..., E k-}. When A0 ..... Ak_1 are predetermined, the task of learning consists
in figuring out of permutation ((%O, ay, ..., 01k_ 1) and vector W = (Wo, W 1 ,

Wn) satisfying

CSIGN(X, W) = SJ (5)

for each X ( E j 0, 1, .., k-1, where =(w•0 , W1 9 ..., Wn) - vector

complex-conjugated to W; (XW) = w0 + w xI + ... + WXn - scalar product of

(n+l)-dimensional complex-valued vectors in (n+l)-dimensional space. If (5) is

true, sets A 0, A1, ... , Ak-1 are called edge-separable.

Since we consider neural network, we can assume that permutation (a0, a,,
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.ak) is known, because it will be determined by the state of neurons from

nearest neighbourhood of given neuron.

Now we have to make iterative evaluation of sequence S of weight vectorsw
WO1 WI, .... for it to satisfy condition (5) starting from some number m and Wn=

Wm+1

The sequence Sw is evaluated as follows:
a .

Wi+ 1 = Wm + Ws "Dm"* Xm ( 6)
m

where D >0 - correction coefficient, S is equal 0, 1, 2 or 3 depending on onem m
of the following cases:

cc

a). Wd0 = 0, if CSIGN(Xm, W) = ;

a .+I
b). Wd, = -ic, if CSIGN(XI,, Wi) = E £ for k = 2, 3 and

a.+1 a.+[k/4]
£ d *CSIGN(XmWm)9 W m for k )> 4;

c). (J2 = 1, if

ca +[k/41 +1 a +3[k/4]-I
jCSIGN(Xm, Wm) for k /> 4;

d). wd3  = i, if
a j+2

CSIGN(Xm, WVM) = £ for k 3 and

a j+3 [k/4] a•.+k-i

£ • CSIGN(Xm, Wm) E C k for k 4.

Here [k/4] is an integer part of k/4, " - " is defined as follows:

EP -< Eq <-> p •< q (mod k).

Let's clarify the meaning of rule (6). Note that in our case D = D = 1,
m

in = 0, 1, .., because all the components of all input vectors X have a constant

modulo (magnitude) equal to 1. In case a) vector W = W satisfies (5) when X =m

Xm, so there is no reason to change it. In cases b) - d) weight vector is

corrected by component-by-component addition to Wm of some vector depending in
.0

each case of the difference between C JCSIGN(XM, Wm) and C0. The second
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addendum in (6) is evaluated from following reason:
a.

(Xm, win+ ) = (Xm, Wm) + (Xm, Ws * 'E Xm) =
ma. a.

= (Xm ,•Wm) + Ws "E a(Xm, Xm) = (Xm, m) + (n++l)W s "EJ

m m

where n is number of neuron inputs. WJ is introduced to make the value of5
m

expression a.
CSIGN(Xm, Wm+i) = CSIGN [(Xm, W•i) + (n+l)s " J ]

O . m

closer to E J at each next iteration.

Initial value W0 for vector W can be arbitrary (furtheron we will consider

its selection for associative memory learning).

So iterative learning process 13 reduced to sequentional application of

formula (6) taking into account rules a) - d) till case a) is reached. It is

evident that if a. is fixed, this process is converged maximum on step 5-6. If

permutation (a0, 51,..., ak_l) is fixed, then W 0  is the first to be evaluated
a1

according to (6). Then we use the obtained vector for evaluation of W0 , etc.

every time checking new weight vector for previous C.C This procedure goes on

until vector W satisfies (5).

THEOREM L (On convergence of leaming algorithm). If learning subsets A 0,

A, ... , A k-i are edge-separable, then it will take finite number of steps to

obtain vector W satisfying (5) for all learning subsets.

If we presume that learning process is infinite then we will obtain

contradiction with edge-separation of learning subsets.

So investigation of the possibility of neuron learning in each particular

case is reduced to the investigation of the edge-separation of learning subsets.

Note if this issue is settled positevely, iterative learning process is

converged pretty fast. The number of iterations can reach hundreds, sometimes -

thousands, but not more.

IV MODEL OF ASSOCIATIVE MEMORY ON THE BASE OF CNN FROM

MULTI-VALUED NEURONS

For solving the task of storing m patterns (grey-scale images) determined by

matrixes Pl, P2 , ... ,pm of N * M dimension and each image contains k of
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grey-scales: 0, 1, ..., k-i, let's use CNN based on multi-valued neurons. The

task is reduced to evaluation of such weights W that any of P patterns could be

reconstructed during finite number of steps from the input pattern P1 that

differs from P in a number of points.

So let's recode given patterns P from integer-valued to complex-valued

(0 -> C0 ... , (k-i) -> F(k-1)). Then for evaluation of the connected weights

between ij-th and pq-th neurons we will use the following Hebb rule [3]

generalization for complex-valued patterns:

0 for li-pi > 1 or IJ-qI > 1

S1 P 1 for Ii-p i<l 1 or Ij-q j < 1
1=1

where Pj is an ij-th point of 1-th input pattern, " is the complex-conju-

gation.

Having evaluated all W0 weights for all the neurons, we obtain initial value

for weights of our associative memory. Further, for evaluation of final values

of weights W that will determine dynamics of the associative memory, it is

necessary to apply learning algorithm based on (6) for each neuron from CNN. It

is evident that the speed of learning algorithm operation will be the higher the

more patterns P are correlated among themselves or , which is the same in our

case, the less is the Euclid distance between patterns.
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Abstract:

In this contribution the problem of cellular neural network parameter tolerances is dis-
cussed with special regard to the network generalization abilities.

1. Introduction

In the contemporary state of art of the theory of artificial neural networks in gene-
ral and also of cellular neural networks especially a good part of attention is given to
the problems related to efficient methods of network learning and to the questions con-
cerning the neural network approximation abilities. The people dealing with the cellular
neural network realization give a lot of attention to finding of structures, which can be
implemented to VLSI chips and slices.

Very few of these authors have payed their interest to one very fundamental problem,
which is the influence of designed artificial neural network parameters deviations from
their theoretically optimal (nominal) values, found by the use of theoretical procedures
of network synthesis, on the overall cellular network function.

2. Tolerance Problems

In the general system theory, already many years the problem is known, how to opti-
mize the nominal system design so that the influence of these parameter changes will be
minimized. The optimizatio:a is usually made so that the fundamental (primary) system
properties (e.g. their transformation functions) are conserved while some of the secondary
properties, e.g. the parameter tolerances are optimized. In the space of parameter tole-
rances this means usually, that such tolerance polyhedra is searched, which involves the
maximal amount of acceptable systern realizations. The solution of this problem is easy in
the trivial cases only, where the straightforward methods of system analysis are applicable.
However, if the number of system parameters is slightly higher (several few tenths), such
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approach is to be replaced by the considerably complicated numerical procedures based
usually on statistical methods. The respective computation is often complicated and time
consuming and therefore a lot of human mental energy was given to the search for effective
and efficient design optimization methods.

The solution of the tolerance optimization problem for neural networks in general is not
solved up to now. Nevertheless, some attempts in this respect were published elsewhere
(see [1,2]).

When dealing with cellular artificial neural networks, we face to a little better situation.
While the complexity of the mentioned problem is straightly related to the number of
optimized parameters, we can use the advantage of the local connections existing between
individual neuronal cells. Therefore, the wave matrices, with which we have to deal are
much more spare. Their optimization with respect to the influence of parameter deviations
is solvable with much less effort and also with much less powerful computer tools. For this
some of the methods, developed on the base of statistical derivatives and design centering
are applicable.

In cellular neural networks however, some other problems appear:

" one of them is the optimization of the structure as whole, i.e. the solution of the
optimal connection between the eventually nonuniform connected neural cells or
their nuclei;

" second problem consists in the fact, that the sensitivity of network properties, i.e. of
the network transformation function depends on the number of network parameters
(i.e. weights in this case) and decreases with the redundancy of the structure in
general. Therefore, when dealing with cellular neural networks one can expect
higher sensitivity with respect to cell parameters.

Also this kind of problems are principally solvable through design centering. The
design procedure can be applied here in two ways:

1. on the unlearned structures as a tool for final fine network training, where it often
helps to reach lower error values than obtainable by the use of standard learning
procedures only (of course, according our experience, the starting from some pre-
learned point in the respective multidimensional space is of the advantage),

2. on the satisfactory trained structures as a tool for finding such solution, which
gives better properties of the secondary category, e.g. with respect to generalization
ability.

Generalization in general represents the ability of the network to give the expected
response also on inputs coming from regions, which were not trained. If the term "ex-
pected" is reasonable defined, one of the main questions is to find the minimal training
regions, which are satisfactory for to reach the requested output in other regions (see [3]
e.g.). The analysis of parameter tolerances allows us to attack this question from another
side, i.e. to try to find the value of influence of weight matrices for which the changes
of investigated secondary network properties do not change more than the prescribed e
value.
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From such an analysis for individual cells we can made some estimation on also for
the whole cellular neural structure (e.g. through expansion in series of nonlinear func-
tions in the set of given points in tAe training regions). In the case of cellular neural
networks the expected accuracy of such an estimation can be considerably good, because
the respective nonlinear transformation is applied only once (for one layer network) and
the mathematical expressions of the expanded series are related on sparse weight matrices
only.
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Abstract

Signal processing in Cellular Neural Networks (CNNs) consists of multiplying and adding
of signals, of calculating correlations and of shaping signals with a nonlinear function. These
operations are transformed into optical processing steps by using spatial light modulators (SLMs)
and lenses as basic optical elements. The SLM performs multiplications massively in parallel and
with the speed of light whereas lenses realize a Fourier transform. A special system with two
SLMs and two lenses is able to represent an array of CNNs without severe limitations on the
interconnections between neurons. The paper gives an introduction and an overview on optical
signal processing for CNNs. It is concluded by an example for optical pattern recognition.

1 Introduction
Analog and digital signal processing performed electronically is a well established art as all necessary
components are available. For all practical cases they are even available in miniaturized or integrated
form. Therefore other physical means of processing such as optical ones should only be considered
if they offer convincing advantages. One is inclined to go optical for the enhancement of speed of a
single operation since it may be performed very fast with the speed of light. However, as we shall see
later, for many applications this may not be the overriding advantage of optical processing, especially
because one has to consider the time for a sequence of operations. We'll investigate the issue for
Cellular Neural Networks (CNN's) introduced by L. Chua [1] [2]. After recalling the basic equations
and circuits for Chua's CNN's we shall have a comparative look at the electronic and optical processing
required. This is followed by a more detailed description of the components and systems for optical
signal processing. The presentation will be concluded by an example for optical CNN's.
2 The Cellular Neural Network

Outputs IA Clock
Yi+k,j+1(n) template

+ ~ j (n+

Inputs B d.
Ui+kj+l template

Figure 1: Architecture of neuron C(i, j)

In electronic realisations CNNs are as a rule only connected with their direct neighbors. An
interaction with more neighbors is desirable. If N neurons were fully interconnected we had for each
neuron N - 1 incoming lines from other neu~ons in addition to one line from its own feedback resulting
in N 2 interconnections among all neurons. Even for moderate numbers of N the interconnections
would be no more feasible on an IC even not with several layers of metalization.
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The signal processing within a neuron with the architecture in figure 1 is described by the state
equation

zX,,(n + 1) = E ak,zyi+k,j+L(n) + E E bk,ju,+k,,+j + d,, (1)
k=-r 1=-r k=-rl=-r

which represents analog sampled data processing at the discrete times n, n + 1 etc. . It could also be
formulated for digital processing. The terms in equation (1) are:

Xi,j(n + 1) the state of neuron i, j at the time slot n + 1
akt the feedback operator (A-template)
yi,j (n) the output of neuron i, j at the time slot n
bk,z the control operator (B-template)
uij the input at neuron i, j
dj~j a bias which shifts the nonlinear function
r the size of the neighborhood

Reciprocal time-discrete CNN's with arbitrary sigmoid functions f converge to their proper output
[3]:

S= f(x,,(n)) (2)

The signal processing required for CNNs is as follows:

i) multiplications of the signals Yij and uij with the weights akj and bkt in the templates for which
operational amplifiers with a network of resistors can be used; in digital realizations expensive
multipliers are necessary. The multiplications should preferably be carried out in parallel yielding
a large number of multipliers.

ii) Equation (1) contains two crosscorrelations between the weights in the templates and the signals
for which again adders are needed. Electronically this again is performed by operational ampli-
fiers with resistors for the adding. Adding comes relatively easy for analog or digital circuits if
it is done electronically.

iii) The three terms in equation (1) have to be added.

iv) The nonlinearity f again is realizable by an operational amplifier or by a network of biased
diodes. The shape of f can be formed relatively free and easy by electronic means.

v) In digital CNN's delay must be inserted in the feedback path in order to avoid nonrealizable
delay-free loops.

vi) For a large size of r of the neighborhood the interconnections would lead to a large number of
metallization-layers on an IC. Practical limit presently are, however, three layers.

Next we have to look at properties of optical components.

3 The spatial light modulator (SLM)
The liquid crystal (LC) flat panel display 7known from TV-systems is one of the basic elements for
optical processing. Firstly its operation is outlined before we turn to the specifics of optical processing.
The LC-cells in figures 2a) and 2b) contain the LC-material usually of the twisted nematic type
embedded between two orientation layers on two glass plates. Between the two transparent electrodes
underneath the orientation layers a voltage U can be applied. If no voltage is applied as in figure 2a)
the lengthy molecules of the LC orient themselves in a helix where the groves of the orientation layers
hold the molecules on each side in a given position oriented perpendicular to each other. Because of
the helix the material is called twisted nematic. Incoming light is linearly polarized by a polarizer-foil.
The structured arrangement of the LC-molecules provides an electrical and optical anisotropy of the
LC-material with speed of light depending on the direction of the light. This can be explained by a
different speed of the ordinary and the extraordinary beam. The effect is calied birefringence and is
the cause for a rotation of the polarized light by 900 if the thickness d of the LC-material is chosen
properly. The analyzing polarizer is oriented in the same direction as the incoming polarizer. Thus
polarized light turned by 900 cannot pass the second analyzer. The cell appears dark. Passing of
light is blocked. If a sufficiently large voltage U is applied as in figure 2b), the LC-molecules orient
themselves in parallel to the electrical field. In this mode no rotation of the polarization occurs and
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Polarizer

Glass

Transparent
electrodes -

OrientationS~layer

U = 0 • / Liquid crystal U > Uth,.,
molecules

Orientation

Transparent
electrodes

Glass

Analyzer

a) Light is blocked b) Light passes

Figure 2: The principle of operation of a TN cell

the incoming light fully passes through the analyzing polarizer. The cell appears bright. For lower
voltages U a rotation of the polarization by less than 900 is observed and a component of the light can
pass through the second polarizer. The cell appears grey. The grey shade is controlled by the level of
the voltage U applied. The surface of the glass plate is subdivided into an array of rectangular picture
elements (pixels) each of which can be individually controlled by a voltage. This array of pixels is
called a spatial light modulator (SLM).

The transparency T of a pixel for incoming light is a complex function as not only the amplitude
but also the phase of the light wave is affected by the LC-material. ITI and arcT are given as (4]:

TI = 1 1 - sinr2 + (n.(U)-no) (3)

2v" 1 d 2  2 [4 T2

4-+ T2- n.(U) - n.

arc T (n.,(U) - n.) ±MV.. ; = 0, 1, 2,.. (4)

with

no is the refractive index of the ordinary beam
n, (U) is the voltage dependent refractive index of the extraordinary beam

The nonlinear function IT(U)12 is shown in figure 3. This nonlinearity is used for CNN's. The
addressing of the pixels can be achieved electronically or optically. The circuit for the electronic
addressing is drawn in figure 4a). The thin film transistor (TFT) operates as a switch. If the TFT's
in a line of the SLM are turned conductive by a positive gate impuls the video-signal determining the
grey shades is fed in through the column lines and charges the LC-capacitarce CLC and the additional
thin film storage capacitance Cp in a pixel. This is simultaneously done to all pixels in a line of the
display. The information is fed in one lin, at a time. After charging the capacitances within the
time tL the TFT's are turned off by which the charge is maintained on the C's. The rotation of the
LC-molecules is not yet completed after tL. However, since the voltage across the C's is maintained
the rotation is still allowed to continue to its final position. After tL, the next line can be addressed.
The time tp required to write in a full picture in an SLM with n lines is tp = n tL reflecting in a
picture frequency fp = 1/tp = 1/(r tIL). The time tp is essential for the programming of an SLM
with new picture information.

For a typical cell with an twisted nematic (TN) LC-material and fast TFT's with CdSe as semi-
conductor tL = 5Bps [5]. Thus a picture with n = 1000 lines yields tp = 5ms and fp = 200Hz. This is
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Figure 3: Trans-.ission-versus-voltage characteristic of a TN-cell

the largest picture frequency presently available with TN- cells. The time t L represents the speed bot-
tleneck in optical processing. Till now electronically addressed SLMs with up to 575 x 2088 = 1200600
picture elements each with a size of 130 x 48pom2 have been produced in our laboratory [6].

Yi video signal Yi+i Yi Y4i2

gate impuls TFT Ph

CLCR

zj+l zj+,

a) b)
Figure 4: Addressing circuit of a pixel a) electronical b) optical

The optical addressing of an LC-cell is depicted in figure 4b). An incident light beam hits a
photoconductive layer and lowers its resistance RPh due to the intensity of the light. This changes a
resistive voltage-divider such that the voltage across a pixel of the LC-cell increases yielding a higher
transmissivity of the LC-material. The cell .n figure 4b) has to be operated in a reflective mode since
the photoconductor is not transparent. The light to be modulated is shone onto the cell from the same
side as the reflected beam emits.

4 Optical components of signal processing
The components are treated in the same sequence as in paragraph 2.

4.1 The optical multiplication

SLM /Output signal
A(zi, j) \O(zi, Yi)

Input signal
U(X,, Yj)

Figure 5: Parallel and analog optical multiplication

The liquid crystal display or an SLM in figure 5 exhibits a 2-dimensional array of pixels at the
location zi, yl each of which has an electronically or optically controlled transmission. We assign a
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pixel to each neuron. If we place as input signals a picture U(zi, yi) with given grey shades u~j in the
N pixels zi, yj behind the SLM A(z,, yi) in figure 5 with also N pixels exhibiting the grey shades aij
and shine light through both then the outgoing light intensity represents the analog multiplication [7]

O(zi, yj) = U yi)A( yj) (5)

as each light beam through a pixel zi, yj is attenuated by the equation

oi, = uj,• (6)

SLM's with N > 106 are presently fabricated. Therefore the set-up in figure 5 realizes more than a
million analog multiplications in parallel and with the speed of light. This massive and fast parallelism
is one of the biggest assets of optical processing.

4.2 The optical crosscorrelation

SLM Lens Filter Lens
(input display and A(w., w,)
nonlinear element)

4-f Input Input Input Output signal c4fu(n)
p,,, (n) signal spectrum spectrum

si Z. . . CCD-Camera

if i even

Neural Input and j odd if i and j even

States ui,j

if i odd
and j odd

Figure 6: An optical Time-Discrete CNN

It is known in optics [7] that the first lens in figure 6 with focal length f performs a 2-dimensional
Fourier transform of a picture or a field in the front focal plane with the complex light wave amplitude
Y(z,, yj). The Fourier transform is the spectrum

Go Go

Z(wf,w) = - f f Y(zi,, y)exp(-j(Woz, + ,Wy))dz, dy3  (7)
-- 0 -- 00

with the spatial frequencies in x- and in y-direction

2.-v 2.-v
€o .= f - 2o and Wy = yo

as well as

j the imaginary unit j =
A the wavelength of the used light wave

The scaling factor in front of equation (7) is independent of the variables and is therefore from now
on neglected. The equation (7) is an approximation due to Fresnel which only holds for thin lenses
and paraxial light rays.
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Now we turn to a 4-f system which consists of the two lenses in figure 6. The spectrum Z(w , w,)
in equation (7) is located in the back focal plane of the first lens where it is multiplied by A(w., wV)
using an SLM. The bar stands for the conjugate complex of A. The spectrum

S(W=,•W) = Z(W.,W ) A(wWVj) (8)

at the output of the SLM is again Fourier-transformed by the second lens yielding

00 00

o , = f J S(w,,) exp (-i(W(== +W w,)) dw d (9)
-00-0

We now have to clarify the meaning of O'(w., w.4) in the new plane of spatial frequencies w. and
Y . An inverse Fourier-transform is not available with lenses. Since we are accustomed to the result of

the inverse Fourier-transform leading from the domain of spatial frequencies back to the space-plane
we look at the space-plane expression corresponding to S(Wf, w.), namely

00 00

O(zy) = f f S(w=,w w)exp(j(w. z+wyy))dw. dwv (10)
-00 -00

A comparison of equations (9) and (10) reveals that the result 0' obtained by the second lens
coincides with 0 by interpreting the variables w. and w' as

3w = -X and WV = -y (11)

yielding

o'( z, -y) = o(z, Y) (12)

Therefore the mirror-image of 0' is identical to the inverse Fourier-transform of S(w=,w,) in
equation (8). On the other hand the inverse Fourier transform in equation (10) can also be calculated
by a convolution of the inverse Fourier transforms ao(z, y) of A(w=, w.) and y(z, y) of Z(w=, w.), where
ao(z, y) is the point spread function of A corresponding to the impulse response of a transfer function.

The convolution yields

C"• cc

0(X,y)= J /ao(a, O)y(z -ay- 3)da d3 (13)

-00-00

With the substitution -a = a' and -P = 0' we obtain

00 0

0(z Y)= f J ao(-a'+,-,')+(z+a',y+ #')dwdfl (14)

-00-00

If a(x, y) as the spatial function to the spectrum A(w., WV) is real for real z and y, then a well known
theorem states that A(w., w.) has the inverse transform an(z, y) = a(-z, -y). Thus equation (14)
yields now again with variables a and 3

O(z,y)= f fa(a, P)y(z +oy )dad,3 (15)

-00 -Q.

This is the crosscorrelation between a(z, y,) and y(z, y). The result in equation (15) can be phrased
as follows: The 4-f system in figure 6 performs a crosscorrelation between y(Z, y) and a(z, y) if y(z, y)
represents the input field and the conjugate complex of the spectrum of a(z, y) is used in the first focal
plane of the second lens. However, the output O(z, y) is the mirror image of the desired crosscorrelation
0' (Zy) = 0(-X, -y).

SLM's exhibit a discretisation of the a-y plane into pixels zi, y• which for briefty are denoted by
i, j. The correlation integral in equation (15) becomes the double sum
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Oi j) E :ac,~+ o,j + ) (16)

or with denotations closer to equation (1)

O(i,j)= ak,l 3yi+kj+l (17)
k=-r 1=-r

where the finite extension r of the summing has been taken into account. This limitation is possible
because ak,L $ 0 only for k = -r,-r+l,-..,r- 1, r and I = -r,-r+1,-..,r- 1, r. The system
in equation (17) has (2r - 1)2 free parameters. The operation in equations (15), (16) and (17) are
called space invariant because the output 0 depends on the difference rather than on the actual value
of the arguments of a(z, y) and y(m, y). The correlation equation (17) realizes the desired correlations
in equation (1) by massive and fast parallel processing.

The crosscorrelator has a physical length of 4f, therefore it is usually designated as a "4-f-system".
It is possible to reduce the physical length of the optical correlator to about 1.4f if the simple lenses
are replaced by lens systems [8].

4.3 The optical addition
The three terms in equation (1) have to be added. In strong contrast to electronics adders are hard
to achieve in optics. One could add light intensities with photosensitive resistors which decrease
its resistance with increasing light intensity. However, this effect is highly nonlinear; in addition the
characteristics of the resistors fluctuate widely from sample to sample which makes high precision signal
processing virtually impossible. Therefore we implement additions by making use of the additions
associated with the crosscorrelation in equation (17) by putting all three terms in equation (1) into
one single matrix [9] [10]. We combine the inputs to the templates in figure 1 into one variable pi,j(n)
in equation (18) as further detailed in figure 7.

i 1 2 3 4
1 10 Io Io Io
2 U1,1  Y,1 U1, 2  Y1,2

lh/2jlp(n) i even, j even 3 I0 I0 I0 Io "-
pj(n= ui/ 2 ,(i+l)/2 i even, j odd (18) 4 U2,1 Y2,1 U2 , 2  Y2,2 ...

I0 i odd

Figure 7: Combined Input coding scheme for ps,

Similarly we combine the A- and B- templates and the bias dd, which is used to shift the nonlin-
earity f, according to equation (19) and figure 8

ak/2,1/2 k even, I even
t,,i = bk/2,(z+1)/2 k even, 1 odd (19)

I1'+ll/2, k odd

The bias function Ia is chosen according to:

ZI&,iIo = d,,, (20)
k=-l2v-1

t ki is the kernel of the optical correlator. The optically computed correlation c,,(n) between pjj
and tk,l contains the state variable zil(n + 1) as the elements with even i, j. Thus

2r 2r v r

S= x + 1) = tk,1p2t+k,2j+I(n)= r t2h,21p2i+2k,2j+21(n) +
k=-2vr- 1=-r-21 k=-r =-"

E E t2k,21-'lP~+2h,2j+21.4(n) + E t2kt j~+k-,j1

k=-v 1=-r k-- 1=-2v-1

(21)

A look at the meaning of the indices of 4,, and pij in equations (19) and (18) reveals
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"I-1,-a I- 1,- 2  1-1 ,- 1  1-1,0 1-1,1 1I-1,2 "
""ab-1 - , -,-, b-l,O a-1,o b-l,1, a-,,,1 ...

•"" 0,-3 I,-2 1,-1 10,0 I,1 10,2
.. bo,- 1  ao,- 1  bo, a0 ,0  bo1  a0 ,1

1 1,-3 11,-2 Il,- I /1,o 11,1 11,2 ...
• b1,- 1  a,,.,1  b,o a1 ,0  b1,1  a1, 1

Figure 8: Combined Template coding scheme

k=r =-r k=r l r =- l--2r-z,,,(n + 1) = aAk,Iyi+k,j+E(ii) + E 1: bkjj+~ + E 11.,1Zlo (22)

Figure 9: Hologram for a corner detector (enlarged)

The detection of the correlation result c2i,2 j(n) poses another problem because all sensors (i.e.
CCD cameras or photoresistors) are sensitive only to the intensity of the impinging light wave. As the
intensity is proportional to the squared magnitude of the complex light wave amplitude, it is impossible
to distinguish between positive and negative values of c2,,2j(n). This ambiguity can be removed if a
constant D = I minc 2,,23(n)j I min z,,j(n + 1)1 is added before the sensing. In the actual optical
realization this will be done by adding D to the ri-ht side of equation 20:

SE IA:,,. 0o = d,,j + D (23)
k=-r 1=-2r-I

The increase of the state variable z,,j(n + 1) by a constant D may be canceled with a shift of the
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nonhnear output function f(z) in equation 2:

f (z,,,(n + 1)) = 1(z,,j(n + 1) + D) where j(x) =f(z - D) (24)

The nonlinearity will be described in the next paragraph.

4.4 The optical nonlinearity
The nonlinearity is realised as outlined in paragraph 3 by the nonlinear transmission of the SLM. The
optical system representing a CNN is shown in figure 6.

4.5 The optical storage
Storage for photons is not so readily feasible as storing of electrons on a capacitor. However, new LC-
materials permit to overcome this shortcoming of optical systems. Ferroelectric LC-materials exhibit
two stable positions of its molecules, one in which the cell is blocked and a second one in which it is
transparent. The molecules assume these positions with an appropriate addressing impuls and stay
there also after the electronic addressing has been removed [11. This effect allows for the storage of
images or of a bit-pattern as required in digital signal processing.

a) b)

c) d)

Figure 10: Coiaer Detection of four squares
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4.6 The interconnections
The most attractive feature of optical processing is the fact that the interconnections between the
neurons are provided inherently and in a massive parallel form by the Fourier transform of the lens.
Thus the problems encountered with interconnecting metallization layers on a chip just do not exist
in optical processing. The weights of the interconnections are choosen according to the combined
template tki, in equation (19). The conjugate spectrum of tk,t in the filter plane of the crosscorrelator
can be realized by an SLM or as in the following experiment by a computer generated hologram.
The hologram is a binary amplitude filter which is based on a Lohmann coding scheme with circular
overflow [12] [13]. In this coding scheme, the area and the location of small holes in an opaque screen
are choosen according to the magnitude and the phase of the required complex valued filter. Figure 9
depicts a filter which realizes the combined template for a corner detector. An example of an optical
CNN which performs corner detection will be given in the following paragraph.

5 Operation of the optical CNN
Figure 10 shows an example of a CNN which performs a corner detection of four squares. The original
input picture is depicted in figure 10 a). Figures 10 b) - 10 d) show the combined output in time slot
1, 2 and 4 during iteration thereby confirming the correct operation of the optical CNN.
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Robustness of attractor networks and an improved convex corner
detector

P. Nachbar,' A.J. Schuler, T. Fuissi, J. A. Nossekt, L.O. Chua•

Abstract
fly dviiing several notions of ½obustness for an attractor network, we are able to augment previous

lesdlts about the AdaTron a~lgor'ithm by explicit values for the robustness of the optimal weights. We

show, th-at the symnmetry of a problem is reffected by the invariance of the optjanal weights. This
enebic:s us to deduce that .a convex corner detection, using a discrete-time Cellular Neural Network

(DTCNN), can not be accomplished wi•th just one clock cycle, and we propose an improved convex

corner detector.

1 Introduction

It was shown, that the AdaTron (Adctptative PerceptT'on) algorithm is able to find the most robust weights
of a perceptron, just taking actual constraints into account [2, 3, 4, 111. Algorithms solving the perceptron
problem [13, 10] can be applied to the learning problem of attractor networks, provided one is able to
specify the trajectories explicitly, lernce we were able to specify an algorithm which yields the optimal
weights for a rotationally invariant (or is .tropic [14]) r-neighborhood DTCNN [5, 121 on a square grid.
By rotationally invariant we mean that any rotation of ]k • 900 with k• E N around the center of the
template and any reflection along the diagonals through the center, leaves the template invariant. In the
first section we augment these results by providing explicit formulas for the insensitivity of the optimal
solution and define several notions of robustness for an attractor network. Further we will show, if a
task is invariant with respect to some group, so are the optimal weights. As a side effect it can happen,
that the optimal weights are invariant with respect to a larger group of transformations. This leads to
the observation that the conventional convex corner detector must fail in some situations. Using this
information as a guide we propose an improved one.

2 RIob•ustness of attractor networks

Let us conridor discrete time neural networks [9, 1, 8] i.e.

The design problem is gi;ven by triplets of patterns (pV, •" or&), where p" is the desired output (after one
time step), •" is the previ;ous output, and o" is the input pattern for a = 1,..- ,P. Using this notation
the design problem tnkes the form p,(at +, L.1- •,O. • + ;&) > 0 for each pattern index v and each neuron
k. a• resp. b• is the k-th row vector of the m'ratrix A resp. B. Note that any solution can be scaled
by a positive factor yielding another solution of the design problem. It is reasonable to define the most
insensitive solution (also called optimal stability [7]) by the following rain-max problem:

max rmi-tp0(a,• + bIo#" + i•) subject to UI a• 112 + [I b•I +i] = 1 fork = 1,.-- ,..

We will provide a more rigorous justification later when we introduce the notion of robustness as used in
statistical design by norm body inscription (15, 11). Note that the constraint imposed on the "weights"
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is, due to our previous remarks, natural and moreover the problem would be ill-defined otherwise. It can
be shown [7, 2, 4], that this nin-max problem is equivalent to a convex quadratic programming problem,
namely

min(1 ah + 11b I 12+i2) subject to pi(a& + b'a + +ik) -1 VV and fork .,n,

which can be solved efficiently for example by the AdaTron algorithm.

It is often necessary to impose constraints on the "weights" A, B and i, for example requiring sym-

metric matrices or the translation invariance of the weights which yields a DTCNN [8]. This can be done

by specifying a linear parametrization S : Rm -- RflX,. of the "weights". We will proof that even in

this case the equivalence of the min-max problem and a suitably chosen convex quadratic programming

problem still holds, hence providing an efficient tool for the design of the most insensitive DTCNN.

2.1 The AdaTron Theorem

In the last section we claimed the equivalence of a certain min-max problem to a quadratic optimization
problem. More precisely it was proven [7, 2, 4]:

Theorem 1 If the perceptron problem is solvable, i.e. if there is a weight vector w E R", such that for
all patterns 0' E R' (V = 1, ..- , P), wtom > 0, then the following is equivalent:

"* Finding the perceptron of optimal insensitivity, i.e. the solution of

max minw'O' subject to !I w III= 1 . (1)
W V

"* Solving the convex quadratic programming problem given by

in II w II2 subject to w'Ov > 1 for = 1,..., P . (2)

The solutions w1 of (1) and w2 of (2) are related by w' = Aw2 for an appropriate A > 0.

Given w2 the solution of (2) the factor A in the theorem is necessary to ensure the normalization of

w1, resp. given w1 , A is used to ensure, that for at least one pattern 00 the equality wIt0'e = 1 holds.
Note that since the solution of a convex quadratic programming problem is unique, also the perceptron
of optimal insensitivity is uniqLely defined. This theorem can be easily applied to discrete time neural
networks if one sets for each neuron k wt := (at,bt,it) and 8Yt := (p ýt,p' Vt,pt) and solves the

quadratic programming problem for each neuron. As already noted it is useful to consider problems
where not all the coefficients of the weight vector w are actually independent degrees of freedom, for

example one may require that the "templates" ah and bk are rotationally invariant, as it is sensible for

some image processing task. Let S : R -- R' be a linear parametrization of the weight vector w, i.e.

each w can be written as w = Sv for some vector v E RK. Such a parametrization is not unique and any

non-singular transformation Q : R ---- * R"' defines a equivalent parametrization S' := SQ. Using this

degree of freedom the original problem (I1), together with the constraint imposed by the parametrization
S, can be written as

rnaxminvtC' subject to vtQtStSQv = 1 ,
V

with (C := QtS'O". If we choose Q such that QtStSQ = lm, where lm is the m dimensional iden-
tity matrix, we can apply the original theorem and obtain a convex quadratic programming problem.
Since Q and 1,,, are non-singular, this can only be achieved if S'S is non-singular. In this case there

exists a orthogonal transformation U such that UIStSU - D is diagonal with entries Dii > 0 and the
transformation Q is given by Q = UD- 5 . We therefore obtain the following theorem.

Theorem 2 Let S : Rm -- * R' be a linear map such that S'S is non-singular. If the perceptron problem
with linear constraints is solvable, i.e. there is a weight vector w E R'n, such that for all patterns 0' E Rn

= 1, ... , P), w'6` > 0, and 3v E R' such that w = Sv, then the following is equivalent:

* Finding tIke perceptron of optimal insensitivity, i.e. the solution of

maxrminwYO" subject to 11 w 112= 1 and 3v E R" : w = Sv.
W V5
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e Solving the convez quadratic programming problem given by

min II v I12 subjecttov t C 1for ' = 1,...,P.

where C := D-°'SUtStO9 and U is an orthogonal matriz such that Ut(StS)U = D is a diagonal
matrix.

If v* is a solution of the second problem the solution of the initial problem w* is given by w" = A •
SUD-0°5 v" for an appropriate A > 0. The value of the optimal insensitivity max;v rin,, w*'O' = A.

The last assertion is easily checked using the properties of the transformations U and D. The assumption
that StS is non-singular just reflects the fact that the parametrization S may not be redundant. Since if
StS were singular, there would be a parameter vector v ? 0 such that (Sv)t(Sv) = 0. But this is only
possible if Sv = 0 and therefore there would be two different parameter vectors (v and 0) yielding the
same weight vector.

2.2 Robustness of attractor networks

In the last subsection we extended the AdaTron theorem and showed how it is applied to discrete time
neural networks if no constrains are present. We introduced for each neuron site j a 2n + 1 dimensional
weight vector w. Let us now introduce the weight matrix W E R Ox("'+1), where the j-th row vector
(written as a column vector) is the previously introduced vector w for the neuron at site j, from now
on named wj. Let us further define the vector * E R"(21'+1) by V := (w,-.. ,wt). A general linear
parametrization of a discrete time neural network is now given by a linear map S : R ----- R,'(2,f+') and
we require that there is a parameter vector v E R" such that * = Sv. The parametrization S can be
used for example to express the translational invariance of the weights wj or the symmetry of the A and
B matrix. Using this notation the learning problem is given by a pair of patterns (p', 0'), where P' E R1
and 9" E R 2 '1+ and we are looking for weights W such that sgn(WO') = p. This in turn is equivalent
to pj'wj3 6 > 0, which we will call the attractor network problem, in analogy to the perceptron problem.
With this notation at hand let us now relate the notion of insensitivity to the notion of robustness as
used in statistical design by norm-body inscription [6, 15]. The robustness can be defined for arbitrary
norms on vector spaces. We will give the definition only for the euclidean norm, since it is the only one
we will consider. For a more thorough treatment of this concept as applied to neural networks, we refer
the reader to [16].
Definition: For any solution W of the attractor network problem (pe 0') with linear constraints S

"* the relative robustness in pattern space rp(W) is defined as the solution of the following optimization
problem

max r subject to VAO': JJAO'11 = r1IO'11 implies w~pý(O' + AO) 2! 0.

"* the absolute robustness in pattern space R.(W) is defined as the solution of the following optimization
problem

max R subject to VAO' : JJA0'1 = R implies w~pý(O` + AO") > 0.

The relative robustness in weight space r,, (W) is defined correspondingly.

Lemma 1 The relative robustness in pattern space and weight space are identical and can be calculated
as follows

rp(W) = r.(W) = min . (3)-j I1 III 0, 11
Correspondingly for RP followsa

R,(W) =
V., 11w II 1

Proof: Let us pick any pattern and 0' and any neuron j with the associated weight vector wj and
compute the maximal robustness just taking this pattern and neuron into account. From the geometrical
representation in Fig. 1 it is obvious, that

pw' A0") = 0 and p;'(w, +Awj)'0" = 0 (4)
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Figure 1: Representatkinc c• the hyperplaiie defined by w3 in the space of patterns e
a) Maximum nor-n pertubation of a pattern
b) Maximum nurm pertubation of a weight vector
still guaranteeing correct operation.

holds. For the perturbation vectors in Fig. la) and b) we have
O * "w --. ", Ijjw I - (5)

From (5) and (4) it is eay to show, that

__w_____ ______ p•'Awp8

Therefore the maximal robustness2 taking all patterns into account, is nothing else, than taking the min-
imum over enfor all v and j and this completes the proof of (3). 0

Remark: Depending on the speciftc application, either of these notions of robustness can be the appro-
priate one. In DTCNNs with their translationally invariant templates all weight vectors w2 are equal in
length and we can apply the AdeTron theorem and corresponding algorithm, which can accommodate

only one constraint (V w2 11- 1) for designing an atttractor network, which is maimly robust. Moreover,
if the patterns have equal length (e.g. binary patterns) such a network will also have maximum absolute

robustness in pattern space R•,. Accounting for linear constraints can be done as described in section
2.1 by( n an te to lgorithm to the parameter vector v and the transformed patterns . The
maximal robustness thereby obtained in parameter and transformed pattern space, will result in maximal
robustness in the original spaces provided, that the transformation S is norm preserving.

3 Convex corner detection
3.1 Group invariant learning

It li often argued, that for rotationally invariant (image processing) tasks, rotationally invariant templates
are the most favorable ones. The following lenma provides a justification.

Lermuma 2 Let {gi, pr, g,s} be an ortuogonan (linear) representation of d finite group G. Let tcie weighti
W2 be the solution of

maxminW'(npa t) > 0 aunfrjet to w 2  wil (7)

w a',p
rtes the wieighnts W prr inoriant with reapect to th•. group, iee. g'W W for all transformatio. Sig.
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Figure 3: Training patterns

convex corners (Fig. 2). Observe, that the convex corners are characterized by the fact that the pixel of

the input pattern and the initial pattern are black and that the cell in the initial pattern has at least
one white vertical or horizontal neighboring cell. Finally one has to ensure, that the final output is a
fixpoint. Therefore, in a third step, we tried to learn the output , together with the original input, to be
a f-xpoint.

For our axperiments we used a 16 x 16 square grid and we refer to indices lower than 1 and higher
than 16 as border pattern. We tried to learn the three processing steps with the initial pattern all white
and all black and with the initial pattern equal to the input pattern and its inverse. In all cases it was
not possible to learn all three steps. Though it is possible with an all white initial state to learn the first
couple processing steps. The template values are given in Tab. 3, and can be used to perform a convex

corner detection using a DTCNN which has to be stopped after two clock cycles, since otherwise it would
produce an all white output.

We therefore designed templates for each one of the two processing step with the learning patterns of
Fig. 2. Again we ensured, that the output is a stable fixpoint. The template values are given in Tab. 1, 2
for border pattern values equal to zero and -1 (white) and for the initial state equal to the input and a all
white state (for the first processing step only). Actually the patterns in Fig. 3 were just the first ones. In
order to obtain templates that are not only optimal with respect to the training patterns, but also to the
task itself we have employed the following procedure. We started out with one training pattern and kept
adding new patterns while monitoring the optimal template values. Since the optimal values changed

by less than 0.1 percent, after 3 patterns were presented we are confident that the template values are

optimal with respect to the task.

4 Conclusion

It was shown, that the AdaTron algorithm yields the optimal weights for various notions of robustness
even in the presence of symmetries, just taking actual constraints into account. From an engineering point
of view, the actual value of the robustness is extremely important and we had to augment our previous
results. The experiments we performed for the improved convex corner detector were quite promising,
since the algorithm is efficient (in our case within minutes on a Sun workstation) and the value of the
robustness is fairly high. Still the main drawback of any design algorithm is, that if the problem is
not solvable with just one processing step a trajectory has to be designed. For problems possessing a
symmetry, we showed how "non-geometrical" transformations can hinder a solution in a single processing
step. In turn this information can be used as a guide for the design of an appropriate trajectory.
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Figure 2: Patterns indistinguishable for an isotropic DTCNN

Proof: The proof is indirect. Suppose, that W is the solution of (7) and let us define the weight vector
w as C := 1/r F,- g5W and compute its length.

11

<,,>= >- E < gqW,gpW > < 1IiggWil lig Will- , (8)
P.9 P,q

since the transformations are orthogonal. Hence there is a A > I such that 1IA*I,• = 1 and moreover, by
construction, AW is invariant with respect to the group G. For any transformation gP and pattern t we
have:

S= * w t(gl)gpe= w? t > A mi W tg' . (9)
r r.

q A,

Since A > 1 and the solution of (7) is unique, we have an contradiction, which proves the claim. 01
The above ideas can also be applied to attractor networks. The neuron at site i of an attractor network
performs the mapping pi' = sgn(W't'). If we require, that the patterns gPC" are mapped in the same
way, the abovw considerations show, that the optimal weights W1 are invariant with respect to the group
G. Actually the group G could be different for each neuron, yielding different constraints for the weights.
This shows that in this context we require a local invariance. As we wiD.l see for the convex corner detection
it can happen that there is a larger group of transformation {h', ... , hR} which contains the group of
transformations {gj,... ,gr} as a subgroup, but also leaves the weights W1 invariant. It is then also
impossible to distinguish between the patterns hPt' and the patterns •. Applying these considerations
to a DTCNN it is easily checked that a isotropic (image processing) task implies that the optimal templates
are isotropic ones. The coefficients of the a and b template hence satiesfy at = a.q iff the sets {IsI, ItI}
and {IP1, IqI} are equal. Let us now illustrate the consequences of the above mentioned "larger group"
for the learning problem. To this end we define the vector U = (Ui,".., U4 ) = (amo, ao, 9 a- o, ao- ). A
rotation about 900 is given by a cyclic permutation of the elements of U. A reflection along the diagonal
permutes U1 with U2 and U3 with U4. Hence the invariance of the template implies that all 4 coefficients
are equal. Such a vector is now invariant with respect to any permutation of its elements, including the
"non-geometrical" permutation of U1 with U2. Therefore the patterns in Fig. 2 can not be distinguished.

3.2 Improved convex corner detection

Following the procedure outlined at the end of section 2.2, we derived an algorithm which yields the most
robust weights for a rotationally invariant r-neighborhood DTCNN on a (M x N) square grid [11]. For
the design of the templates we used this algorithm and by combining the assertion about the optimal
insensitivity (theorem 2) with the definitions and explicit expressions for the robustness of attractor
networks we are able to provide explicit values for the optimal robustness. The considerations at the end
of the last subsection showed, that the detection of convex corners can not be accomplished using a single
processing step of a DTCNN (Fig. 2). To overcome this difficulty we designed a two step process for the
convex corner detection of a binary image. Since straight lines can not be distinguished from corners
(Fig. 2), we use the first processing step to mark those boundary points of the image which appear to be
part of a straight line by placing an additional black pixel right next to it. (gray pixels in Fig. 3). More
precisely whenever a pixel is white and the pattern inside a 1-neighborhood "window" centered at this
pixel appears to be part of a straight line crossing this window, we change the white center pixel into a
black one. This output is employed as the initial state for the next processing step which extracts the
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border pattern value -1 border pattern value 0
input all white input all white

aoo 0 4 0 4
ao. 0 -1.313 0 -1.33
all 0 -1.33 0 -1.33

boo 6 6 12 6
bol 8 8 16 8
b1l 4 4 8 4
1 16 14.66 30 14.66
r, 0.06 0.06 0.03 0.06

Table 1: Optimal template values for the first processing step, for the initial pattern equal
to the input and an all white pattern.

b.p.v. -1 b.p.v. 0 b.p.v. -1 b.p.v. 0
aoo 31 31 aoo 8 8
ao, -26 -26 aol -4 -4
all -14 -14 all 0 0
boo 31 31 boo 6 6
bol 8 8 bol 0 0

bil 4 4 bil 0 0
I -8 -8 I -8 -8
r,,, 0.02 0.02 rw 0.09 0.09

Table 2: Optimal template values for Table 3: Optimal template values for
the second processing step (b.p.v = bor- the stopped process (b.p.v = border
der pattern value), pattern value).
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We use Bayesian methods to design cellular neural networks for signal processing tasks and the
Boltzmann Machine learning rule for parameter estimation. The learning rule can be used for
models with "hidden" units, or for compietely unsupervised learning. The latter is exemplified by
unsupervised adaptation of an image segmentation cellular network, in particular we apply the
learning rule to adaptive segmentation of satellite imagery.

1 Introduction

The Bayesian or Maximum Posterior approach is a very successful device for signal processing
[15, 7, 11], a particular attraction is that it leads to algorithms that map well onto networks of
locally connected, simple processing elements ie. cellular neural networks [4]. With the advent of
low-cost massively parallel hardware, this virtue may end up being decisive for (near) future real
life applications. However, while the Bayesian approach allows formulation of collective models
that solve complex signal processing tasks, general and flexible tools for parameter estimation
are lacking. Direct maximum-likelihood estimation is hampered by the difficulty of obtaining
analytical expressions for derivatives of normalization constants [1]. Besag has introduced two
methods based on approximate maximum-likelihood estimation, the coding method [1], and the
pseudo-likelihood method [2]. Both methods pose difficulties if the image model includes non-
observable attributes ie. hidden units. In this contribution we discuss the use of the Boltzmann
Machine learning rule [10] for parameter estimation. The learning rule may be applied to general
situations with hidden units without corm.plication. We address in this presentation unsupervised
learning.

Since the phase-space distribution of a dynamical system in contact with a heat-bath is a Gibbs
distribution; sampling from such distributions have been central to simulations of statistical
physics systems. The standard simulation tool is due to Metropolis et al. [13]. Geman and
Geman [7] introduced Metropolis sampling from Gibbs distributions as a simulation tool for
visual reconstruction and showed that a Simulated Annealing strategy [12] could improve the
speed of the sampling process. The sampling process implements a stochastic neural network
with symmetric connections. Hinton and Sejnowski [10] studied supervised learning in such
networks and introduced the term Boltzmann Machines to emphasize the relation to statistical
physics. Invoking the Mean Field approximation, Peterson and Anderson derived a deterministic
selfconsistent set of equations for the time-averages of the dynamical variables. Using these
averages in the learning rule, they obtained substancial improvements in speed and performance
[14].
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In the next section the Bayesian approach to signal processing is outlined, and we discuss the
design of cellular networks using the Mean Field approach. In section three we show how
the Boltzmann Machine learning rule may be applied for parameter adaptation. Section four
contains experiments on image segmentation and concluding remarks.

2 Bayesian Signal Processing

The Bayes approach to signal processing has a long tradition, see e.g. [11, 7], or [5] for a
recent introduction. The basic idea is to consider both the source (un-degraded) signal and
the degradation as stochastic processes. The Bayes formula can then be used to construct the
distribution of the reconstructed signal (x), conditioned on the observed degraded signal (y):

P(xly) = (1)

According to the standard interpretation the conditional distribution is the product of the
distribution of the degradation process: P(ylx) _ P(x -- y), and the prior distribution of the
reconstructed signal P(x). P(xly) of equation (1) is referred to as the posterior distribution. A
useful estimate of the recontructed signal is given by the location of the mode of the posterior
distribution, the socalled Maximum A Posteori (MAP) estimate. In the following we derive the
posterior distributions for an image segmentation model.

2.1 Image Segmentation

Segmentation is an important step in many computer vision systems, however even in its simplest
form: binarization of a grey-scale image there exist no established standard solution!. Here we
use the Bayes scheme to derive a simple cost-function that can be minimized by a cellular neural
network. The resulting cost-function is identical to the one used by Carnevali et al. [3]. The
target signal is a smooth binarization of a grey-scale image di, in terms of two-valued pixels
Sj E {-1, +1}. The prior distribution is designed to emphasize smoothness:

N N
P[S] = ZT1 exp M(jj)(Sj _ S,)2 (2)

\j= j=1-'

M(j,j') defines the connectivity, hence the unit cell of the cellular network. Here we just use
the nearest neighbors. More complex connectivity structures have been designed for modelling
textural features [6].

We assume the signal degradation to consist in addition of white Gaussian noise. This degra-dation process leads to the following conditional distribution:

P[dIS] = Z•" exp (Sj - _d)2 (3)
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We want to approach real data for which the noise variance is unknown, hence this parameter
has to estimated as part of the learning process. As above we use Bayes to combine and obtain
the posterior distribution. Clearly it is of the Gibbs form1, with a cost-function given by the
negative logarithm of the posterior distribution: - log P[SId]. We note that the state dependent
part of the cost-function is linear in the parameters M(jj) and Wd = 1/a 2.

2.2 Network Design

The Mean Field annealing method for estimation of averages over Gibbs distributions is well
documented in the litterature see e.g. Hertz et al. [9]. The cellular neural network is designed
to minimize the Mean Field free energy F, and this can be done either in analog mode:

"-• - " OF - (5,) + tanh 0' EM(j,j')(S,) +Wddj (4)

or in discrete time mode:

(St+' (1 A- +)S + tanh (/t IN+Wd (5)

where the time-scale A/r can be used to regularize the stability of the iteration process in
digital implementation(14]. Pt is quantify the annealing schedule, in this work we use the simple
schedule: pt = al + (ttm.,)(,02 _'81)

In summary, the unit cell of the cellular network contains one unit approximating the local
thermodynamic average: (Si), and one input unit dj. We assume that M(j,j') connects nearest
neighbors symmetrically with weight w,,, and the weights to the input units are all tod.

3 Boltzmann Machine Learning

In order to apply the cellular network above we have to estimate the parameters (denoted
w = (Wn, wd)). Since our network is based on the Gibbs distribution we invoke the Boltzmann
Machine learning rule [10, 14, 9]. The objective of the Boltzmann Machine learning rule is to
minimize the Kullback information distance between a target distribution P,. [Sld], (of which the
training set is a finite sample), and the distribution Pw[SId] sampled by the current (stochastic)
network with parameters to.

The learning rule is formulated for a general system specified in terms of inputs, hiddens, and
outputs: (z, h, y). Since the states of the hidden units are unknown for the learning examples, we
compare the marginal distributions, i.e. the distributions integrated over the hidden variables:

'A distribution of the form P(z) = Z-'ezp(-E(z)/T), where E(z) is a cost-function, bounded from below,
and T is a parameter
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Figure 1: Subsanmpled, 128x128 pixel, preprocessed, Landsat image providing the raw (thresh-
olded) evidence for water in the Igaliko region of Greenland (left), and the output evidence
obtained by the unsupervised cellular neural network (right)

D[P,,., P.]j= Dxf DyJ DhP~. [x, h, yjlog f DhP,,,. [x ,y (6)1 ? ? , f DhP.. [x, h, y]

f Dx is short for f 'Ij dxj. The learning algorithm is derived by gradient descent minimization
of the information distance. The recursive learning algorithm reads:

n+1 - W n = 71 ((fl. (x, h, y)))clm.,7pd - (fig, (x, h, Y))frc) (7)

for a any cost-function linear in the parameters w,,: E(x, h, it) = fl., (x, h, y) w., where

fSI, (x, h, y) is an expression in the stochastic variables. (...)ddmpe, indicates that the average is
performed with respect to the current Gibbs distribution, with fixed values for all the stochastic
variables that are specified as input or output variables in an example of the database, i.e. (x, y).
Similarly ("...)fe is the average with only input variables fixed. In brief we can characterize the
learning process as follows: the paramet.ýrs are adjusted to minimize the difference between the
correlations in situations with and without the teacher specifying the correct output [10, 9].

We can employ the above formalism for unsupervised learning if we let our output units S play
the role of hidden units and partition the input image d into a Boltzmann "input" part and
a Boltzmann "output" part. The Boltzmann learning process then adapts the model until we
reach a parameter set for which the "output" part of the image is estimated correctly from
"input" part. Our procedure can be viewed as an example of statistical cross-validation.
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Figure 2: Unsupervised Boltzmann learning of the noise parameter of the cellular segmentation
network.

4 Experimental and concluding remarks

Our case-study concerns the segmention of a subsampled Landsat satellite image. The input
signal is t preprocessed 128 * 128 pixel image representing the evidence for water in the Igaliko
region iv, Greenland. The preprocessing scheme establish the evidence using four frequency
bands. Part of the image has been classified manually into five classes and the evidence is the
result of a simple linear model relating the intensities in the four bands to the classification.
Thresholding the evidence at zero results in Figure la). We adapt the noise parameter of the
cellular etwork in unsupervised mode using a gradient descent parameter of 0.15. In Figure
1b) we s..ow the segmentation of the adapted network. The convergence of the noise-parameter
Wd towai ds the selfconsistent optimal value is presented in Figure 2.

In concl- dion we have shown that the Bollzmann Machine learning rule can be used for identifi-
cation of ?arameters in cellular neu'al networks designed using Bayesian reasoning. By invoking
a crossvalidation-like procedure we were able to adapt the parameters of the cellular network
without supervision, hence generalizing our earlier results on parameter estimation in cellular
networks with hidden units [8].
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Abstract

This paper presents a learning algorithm sinmila, to the Backpropagation-Through-Time approach.
The algorithm is based on the minimization of an error criterion, which is defined as the product of
a fuiction of the state at a given time and the integral of an entire time function of the state over the
trajectory prior to this time. The technique of the calculus-of-variation will be used to evaluate the
gradient of the error in the parameter space, which can be used to descend to a minimum on the error
surface. We will adopt this theory to CNNs and show some simple examples of the learning of CNN
parameters.

1 Introduction

We concentrate on a subclass of neural networks: Cellular Neural Networks (CNNs) [2, 71, where the
interconnections between the neurons or cells are translationally invariant and only local. Therefore, the
number of weights, which have to be learned or designed, is very small. Because of the piecewise linear
transfer function of the CNNs the gradient algorithms of Almeida [1] and Pineda [9, 10, 11], which are
backpropagation algorithms generalized for recurrent neural networks, can not be used. Based on the
idea of Pearlmutter [8] to design the trajectory of recurrent dynamic neural networks, we will use the
trajectory of the CNN state to gain information about the gradient of a modified error functional.

Other approaches towards the systematic design of CNNs have been proposed by Zou et. al. [16], and
later by Slot and Kacprzak [15]. Chua and Thiran [3] provide a method for synthesizing CNNs for simple
applications, and Seiler et. al. [14] show how to systematically design a CNN with stable and unstable
outputs while simultaneously maximizing its robustness. Except for [3], which is restricted to relatively
simple problems, the correct operation of the network is not guaranteed since only the stable or unstable
patterns of the dynamical system are designed.

In the next section we will use the calculus-of-variations technique to minimize an error functional of
a dynamical system in general. The derived equations will be applied to CNNs in Section 3, and some
examples will be shown in Section 4.

2 The Backpropagation-through-Time Algorithm

The Backpropagation-through-Time (BTT) [8, 6] algorithm can be derived from solving a classical vari-
ation problem for any dynamical system [13], which is given by a system of differential equations

*Supported by a grant from the Ernst von Siemens foundation.
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* = F(x,t,p), (1)

where x E R'R is the system state and p a parameter vector of the system.

The performance of the system is assumed to be measured by a scalar functional E which bookkeeps
the errors over the whole transient, i.e. over the finite interval [0, TI:

T

E = LT(x(T)) L2 ((xt)dt. (2)
0

L IR' -- ]R' measures the error at the given time T, whereas L2 : lRI x IR -- R' is integrated over
the given interval, to take into account the effect of a change of the parameters on the trajectory. This
can be used to learn a specific trajectory as well.

The problem is to minimize the error functional (2) under the equality constraint given by (1). Using
the vector equivalent of the Lagrange multiplier A E R' the solution to the constrained problem can be
obtained by minimizing

T

0

A necessary condition for an extremum of E' is that the first variation of E' be zero:1

bE'= [[L~T2 Li6b +IL1(x(T))O½6x+AT OF -- 6A] +(F(x,tp)-k)6Adt. (4)
JI OX ' TO1X ( 5i0

Since 6 E' must equal zero indepindent of the first variation bx, (4) yields the following equations:

The Euler-Lagrange equation:

The associated transversality condition:

A(T)= (OLI(x(T)) )TL dt . (6)

0 t.T

The gradient 7- can be obtained by the differentiation of (2) with respect to p:

OE = T OL--xf T OL 2 Ox\ (7
- j 2 dt -xO5X PIT+LI Ox (7))dt.

0 0

With the partial derivative of (1) with respect to p:
0k OF Ox OF

Op - x Op p(8)

and using the definition of A from (5) together with (6), (7) can be simplified to

OE T (T OF dt. (9)

0

'The partial derivative of a sciu function f(x) with respect to a vector x is defined to be a row vector
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necessary condition for an extremum of E is 8-r = 0.

Minima of the error functional can be found using various gradient techniques like conjugate gradient
methods or Newton-like methods. The BTT-algorithm works as follows:

begin Minimizing the Error Functional E
start with a random parameter vector p
repeat

integrate k from t-=0 to T
integrate A from t = T to 0 and simultaneously evaluate the gradient
perform a gradient step to reduce the value of the error

until gradient of E becomes zero
end.

3 The BTT-Algorithm for CNNs

The backpropagation-through-tinie algorithm can be applied to CNNs [2, 71, and the CNN equations
(10) and (11) have to be used for (1):

+r +r
Xc,d = -Xc,d + E E [a(", A)yc+v,d+. + b(Vj7)uc+v,d+p] + i , (10)

/-=-r 14=-T

Yc,d(t) = f(Xc,d(t)) - • (11 + xc,d(t)l - 1 - XC,d(t)I) . (11)

The state variables Xc,d, where 1 < c < N and 1 < d < M define the two-dimensional grid, can be
arranged in a state vector x E R', with n = NM. The summations are restricted to the valid range
of each index. The parameter vector p of a CNN is composed of the variables of the cloning template
a(v, p), b(v, i) and i, where -r < v < +r and -r < p < +r and r is the neighborhood.

The partial derivative of the state equations with respect to the state variables can be computed from the
right hand side of (10):

(0, if lvl > r or lil > r,
+,,d+ -1 + a(O,,)f'(xC,d), ifv = Oandk = 0; (12)

, a(-v, -it)f'(Xc,d) , else.

The partial differentiation of (10) with respect to the parameters yields:

O rFc,d = f(X .+ .,d+i,) O ,dF,d = 1. (13)
Oa(v, It) ' Ob(v, IA) 8 uci,d+, ai

With the use of A, which has the same dimensions as x, the gradient of the error becomes:

OE TN M

Oa(v,p.) = z z f(xc+v,d+i)Ac,ddt, (14)
o =ld=l

OE TN M

Ob(v,u) = I Uc+s,d+M Ac,ddt, (15)
o ~d=l0 o2 A

° = E A,dt. (16)
o c=ld~i

If the vector valued functions L, and L2 are choosen to be the squared errors of the corresponding cells

L = (f(xc,d(T)) - yc-,d)' and L2.,d = (f (Xc.d()) - (17)



where Ycd is the desired output of the network for cell c, d, the error functional becomes
N MW - T

E = E j (f(Xd(T)) - Yyd),I (f (Xd@)) - yd)dt. (18)
c=1 d=1 0

Therefore (5) and (6) become:

+r +r
Ao,d =- A,d- Z z a(-v, -. )f'(Xc,d)Ac+vd+- (f(xc,d) ,- dY,) f'(Xc,d)2 (f(Xc,d(T)) - yc)*,

vL=-T =--

(19)
T

Acd(T) = (f(Xcd(T)) - 1,d) f'(Xcd(T)) J (f(xC,u(t)) - Ycd)
0

4 Examples

The examples in this section use linear extended CNNs, which are trained to do different tasks using
the previous algorithm. In the case of several learning samples, the error and gradients are computed
separately and then added for the whole sample. Throughout the following examples the initial parameter
was set to zero: p = 0, the time limit was T = 10 and the minimization of the error functional was done
with the conjugate gradient minimization method of Fletcher and Reeves [4]. We will show the resulting
template values, and as a measure of the computational effort of the minimization the number of function
evaluations (running of the CNN forward and integrating the error over the transient), and the number
of gradient evaluations (running backward in time while simultaneously computing the gradients).

4.1 State-based Logical OR

The design of a simple two-cell CNN which produces an output of both cells which is equal the logical
"OR" of the initial state, where +1 is interpreted as 'true' and -1 as 'false' was reported in [14]. As
there is no input of the CNN the operation is called state-based. The four different combinations of
logical values were used as the learning samples. After three gradient steps with a total number of seven
forward and backward, integrations the error was zero. The resulting template values and the phase-
plane trajectory of the four different initial conditions of this two-cell CNN are shown together with the
boundary of the basins of attraction in Fig. 4.1. Although the self-feedback is slightly smaller than one,
this template obtains a stable CNN. The symmetry of the templates is obtained automatically because of
the symmetry of the problem.

.~~ . = I0.000 0.00010.000Ii -i= 10.033

.... ..... ............ 4..... ........... .

7/ Fig. 4.1: The phase-plane trajectories together with the
boundary of the basins of attraction and the template val-
ues of the state-based logical OR CNN
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4.2 Connected-Component-Detector

To learn the task of "Connected-Component-Detection" [5] we used all possible combinations of black
and white cells in a linear CNN with five cells, which were the 32 learning samples. After only 13
gradient descents with 47 forward and backward integrations the error and the gradient were zero. In
fig. (4.2) the learned template values for this problem are given.

a = 0.430 1.509 -0.430 Fig. 4.2: The resulting template values of the Con-
b = 0.000 0.000 030.000 nected Component Detector
i = -0.003

4.3 Two-Cell Oscillator

The last example will show that this algorithm can be used to train one cell of a simple two-cell CNN
to follow a given trajectory. The desired trajectory of the output of cell 1 was a trapezoidal function of
the time with an amplitude of 1, a period of 5 units of time and an absolute value of the slopes of 2. For
this example, the functions LI and L2 were chosen differently to measure only ihe error of cell 1 over
the trajectory, so that the error functional E was

T

E = (f(XI(t)) - y7(t)) 2dt . (21)
0 

)Fig. (4.3) shows the trained output of cell 1, starring from the initial state x = (0, 0.7 )" together with
the corresponding values of the template.

a= -0.672 1.197 4.000
b = 0.000 0.000 j0.00Sz i' •i = 0.006

Fig. 4.3: The output of cell I of the two-cell oscil-
lator and the corresponding template values

5 Conclusion

Our goal has been to find a learning algorithm for CNNs, which is able to learn the parameters of a
CNN to perform a transition from an initial state to a state, which yields a prescribed output. We have
shown a gradient technique which is able to learn the parameters such that a given error functional is
minimized. Of course we find not always the global minimum, because the proposed algorithm uses the
gradient of the error functional in the parameter space. Thus the algorithm stops, if the gradient is zero,
whether this is a local minimum or a global one. Another drawback of the algorithm is the computational
complexity. In order to compute the gradient of the error functional not only the differential equation
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of the CNN has to be integrated forward in time, but adso the Euler-Lagrange equation, which is of the

same dimensionality has to be integrated backward in time. Therefore the complete trajectory of the
states has to be stored. This restricts the application of this algorithm to small examples. But in most
cases this is not a severe restriction, as the learning can be achieved with relatively small samples.
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Abstract

It has been shown that the supervised learning of the steady-state outputs in
a generalized Cellular Neural Network (CNN) is, in general, equivalent to a kind
of constrained optimization problem. The objective function, also be called as the
error function, is a measure of the distance between the sets of desired steady-state
outputs and actual ones. The constraints are due to a set of design requirements
which have to be met for providing the qualitative and quantitative properties for
the network such as bipolarity of the steady-state outputs, ccmplete stability etc.
The approach presented in the paper uses the idea of the penalty function method
in optimization theory where the constrained optimization problem is transformed
into an unconstrained one by adding to the error function the terms corresponding
to the constraints. A gradient descent algorithm has been proposed for solving the
resulting unconstrained optimization problem. The learning algorithm developed
generalizes the recurrent backpropagation algorithm in [6] into the generalized CNN
which is a rather general class of dynamical neural networks including CNN, multi-
layer Perceptron, continuous Hopfield network as special cases.

1 Completely Stable Generalized CNNs

The generalized CNN considered in this paper is a dynamical neural network recently
introduced in [1]. It is indecd a generalization of CNN with respect to both connection
topology and the circuit structure of the cells. As shown in Figurc 1, each cell of a gener-
alized CNN is an n th order dynamical circuit which is a cascade of a linear summation
circuit, a linear dynamical circuit and an output nonlinearity. There are two kinds of
connection weights in a generalized CNN : i) wi,; weighting the outputs y; of the cells, ii)

z weighting the external inputs u;. In this paper, the learning is assumed to be accom-
pli.shed through modification of the connection weights only. For the sake of generality,

0-7803-.375-1/92 $3.00 ©19921EEE
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we define the input vector as v = [v,,v]T. Where, vu = [u, u 2 , ... T ,

= [W(O), ... , x[(O)]T denotes the vector of external inputs, and respectively the vector
of initial states with t is the number of cells. The network weight vector is defined as
14" = [WT,'..., W zT, zT... z]T. Where, wj = [wj,,, wj,2 , ... ,wjy,]T is the weight vector of the
j th cell such that its i th element belongs to the connection between the cell Cj and the
i th neighbor of Cj ; and zj s are defined similarly.
For a given input vector v , a generalized CNN with a chosen weight vector W will pro-
duce an output y(t)&Rt. When the input vector is held fixed, the output y(t) tends to a
constant vector y(oo) , called the steady-state output, if the network is completely stable
[1]. Throughout the paper, we are interested in completely stable generalized CNNs only.
Such generalized CNNs defines an algebraic map between the input and the steady-state
output vector spaces. The complete stability of a network can be ensured by a set of
conditions imposed on the connection weight vector W [1] , [2], [51, [8] . It is shown
in [2] that a CNN is completely stable if the connection weights have the property of
symmetry i.e. wi, = wt,j for all i and i. Such constraints constitute one part of the design
constraints we mentioned and they can be described by the following set of nonlinear
algebraic equalities and inequalities.

g,(W) •O i0{1,2, ... , CI (1)

In addition to the stability, some other qualitative or quantitative properties can be desired
for a dynamical neural network. As proved in [2], the bipolarity of the steady-state outputs
can be obtained by choosing self-feedback weights wi,, greater than a constant Ai . Such
constraints constitute the second part of our design constraints and they can be described
by the set of algebraic equalities and inequalities in (2).

hi(W) •5 0 ie{1,2,...,C 2} (2)

2 Supervised Learning as a Constrained Optimiza-
tion Problem

The supervised learning of the steady-state outputs in a generalized CNN attempts to
approximate an unknown input-(steady-state)output map d = F(v) by minimizing an
error function E(W). The network is trained with the following set of pairs wihich are
samples of the map d = F(v) :

f W, d1), (V2 , d2), ... , (vN, dN) (3)

Where vi and d' represents the input and desired (steady-state) output for the i th sample,
respectively. The error function E(W) to be minimized is a measure of the difference be-
tween the desired and actual (steady-state) output sets. E(W) is defined as the following
summation of the instantaneous errors E'(W)

N

E(W) = E'(W) (4)

Where E'(W) = D(y'(oo), d') denotes the distance between the vectors y'(co) and &d' in
a vector space having a metric D(y(oo),d). Now, the supervised learning of the steady-
state outputs in a completely stable generalized CNN can be formulated as a constrained
optimization problem expressed in (5).
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min E(W) (5)

WeC

Where, C =: {W[g9(W) <_ 0 ie{1,2,...,Ci} and h,(W) _ 0 ie{1,2,...,C2}} . The
method preferred here for solving this minimization problem is the well-known penalty

function method. The reason for using the penalty method is the possibility of converting
the constrained optimization problem in (5) into an unconstrained one which can be

solved by a gradient descent algorithm. The stochastic version of the learning algorithm

developed in this paper reduces for unconstrained cases to the popular backpropagation
algorithm which is indeed a stochastic gradient descent algorithm. The gradient descent
method is proposed here for minimizing the augmented error function E(W) obtained by

adding to the error function the penalty terms as in (6).

E,((W) = E(W) + jP(W) (6)

Where it > 0 and P(W) is a continuously differentiable function of W satisfying the

conditions i) P(W) > 0 for all W , and ii) P(W) = 0 if and only if WEC with C defined

in (5) . It is known [13] that as i goes to infinity any minimum point of the augmented

error in (6) will converge to a solution of the constrained minimization problem described
in (5).
The deterministic gradient descent algorithm proposed here is defined by the iterative

algorithm

w(k + 1)= W(k) - e(k)(VwE[W(k)]) T  (7)

Where, VwE(W) is the gradient vector of f(W) with respect to W , and E(k) is a
nonnegative scalar minimizing E[W(k) - c(VwE[W(k)]) T ] . It is known [13] that such an

algorithm is globally convergent and its limit points are the minimum points of k(W). In

the learning procedure proposed here, the coefficients are set to a small constant value f,

called the learning rate coefficient. One can select f by trial and error. For large values of

€,the algorithm may not be convergent. Small values of c may result in slow convergency.

For the Euclidean metric and for a chosen penalty function, the gradient of E(W) can be

given as

Vw!E[W(k)l = VwE[W(k)] + ptVwP[W(k)]
N t C1

= VW Y (y(o) - .,)' + LVw W (max[0g,(W)])2

t=1 j=l i=1

C2

+ JIVw (max[0, h,(W)])2
:=.l

N t C1

= E Z 2 (y,(oo) - d') V•wy',(oo) + i E2 rnax[0, g(W)] Vwg,(W)
i=1 j=1 i=1

C2

+ it 2 nax[O, h,(VV)l VWh1(V) (8)

3 The Stochastic Gradient Descent Algorithm

In the algorithm given above, the weights are adapted after the calculation of the gradient

of the total error function by computing the contributions from ail of the training samples.



Such a mode for learning is called batch learning. For large sets of training samples,
the batch mode for learning needs much computation to be performed for every update
of the weights. It might then be preferable to have an algorithm which updates the
weights after every presentation of a traning sample. This well known idea of stochastic
approximation leads us to develop the stochastic version of the algorithm in (7). In
the stochastic algorithm, the training samples are viewed as random samples from an
unknown distribution and the expected error function is estimated with the instantaneous
error function Ek(W(k)) .Thus, the connection weight vector W(k) is adapted according
to

W(k + 1) = W(k) - e(k) (VwEk[W(k)]) T  (9)

Where Ek(W) = E'(W) + IP(W) with P(W) defined in (6). It is known [121 that
stochastic approximation guarantees the convergence if the learning-rate coefficients e(k)
satisfies the conditions in (10) and (11).

(10ooc(k) = oo (10)
i= 1

0 < (11)

i=l

The learning-rate coefficients e(k) should decrease slowly in the sense of the divergent
sum in (10) as well as quickly in the sense of the convergent sum in (11).

4 Conclusion

The supervised learning algorithm developed in this paper can be considered as a gen-
eralization of the recurrent backpropagation algorithm [6] to the generalized CNN where
the connection weights can not be chosen freely due to some conditions imposed on them.
The algorithm can be used not only for dynamical neural networks such as CNN, contin-
uous Hopfield network but also for algebraic neural networks having some constraints on
connection weights. The proposed algorithm is useful for training the CNN to perform
image processing tasks.
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Towards a Learning Algorithm for
Discrete-Time Cel!ular Neural Networks

by Holger Magnussen and Josef A. Nossek
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Abstract: The learning process fjr a Discrete-Time Cellular Neural Netnyork is fornaulated as
an optimiz;atioii problem. This involves nmininizing an objective.[/hnction, which is a measure
of the errors in the desired input-to-output image mapping process perfornzed by the net-work.
With this approach, the learning algorithm finds the trajectories, so they n;o !onger have to
hc de,.ined 1) the user.

1 Introduction

Discrcte-'imc Cellular Neural Networks (DTCNN) were introduced in [i]. The DTCNN is
a clockcd feedback network with translationally invariant weights. The transition from one
clock cycle to the next is determined by the equations

XC') a yd( -,_._1) + > I dUd i

,lEN(c) dEN.(c)

+ I 1X C(k ) > 0yC(k) = !(XC(k)) -ii if k) < 0

where 1: is a positive integer corrcspondiang to the clock period, a = (a'1 ) and b = (,.Y) are
the tinplate," (weighted connectio-. s), i is th.- cell bias. y(k) (.C(j.)) is the output iniage
of thc net at tirac .:, and u = (u') is the input imagc. N(c) is a neighborhood of ccil c. In
this paper, the inputs are restricted to be binary-valucd and constant, i.e. u, E {E ]}.
hn most c.s-, -q:-ral nework- &re used to obtain some kind of mapping from input data onto
output data. In .ontrast to this glob-l point of view, the ten.Flates of CNN~s and D7C NTNN s
rrc usually dcrivcd from local rules at cell level: either only the fixpoints of the network

or a detailed trajcctory is designed by the user ([2], [31 or [4]). A Lzrzning Algorithm for
Supervi';ed Training using a Noisy ERror surface for DTCNNs (LASTNERD) is int-oduccd in
this paper. It tacldes the problem of learning the template coefficients from a different angle:
an error measure for the mapping process of input images onto the desired output images is
minimized. This (global) information is the only information which the algorithm uses, so
that it ca.n find a trajectory without the help of the user, and sets thc templates accordingly.

The objective f'nction is derived in the second section, and some pro:mincnt features of
the resulting error surface are discussed in sectio-a 3. Section 4 describes tle LASTNrERD
algorithm. Section 5 gives a short summary of the expcriments which were ,;erfonned to
test the alcr?,-ortln;, and the last section suraniarizes the ideas of thL paper and presents a
short o,;tl,!c k.

G-7303-0375- 1192 $3.00 ,1 9921EEE
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2 The Objective Function

The process of learning is put into the form of an optimization problem, in which an objective

function o, which depends on a parameter vector v = (a, b, i) containing the template

coefficients, is minimized.

The goal of the learning process is to find the parameter vector vopt that guarantees an error-

free mapping of a number of input images onto the corresponding desired output images. An

objective function has to quantify the errors which the network makes in the mapping process.

An obvious approach is the following: an image is fed into the network as the input image,

the initial state is set to either the input image, to a white (-1) or to a black (+1) image.

Then the network runs until it reaches a stable state. The Hamming distance between the

converged output image and the desired output image corresponding to the input image is

used as the error measure.

Oscillatory behavior can be a big problem for DTCNNs, so the case that the network does not

reach a fixed point also has to be taken into account. The network is constantly monitored in

order to detect cyclic behavior. Since a DTCNN is a clocked structure with binary outputs,

this can be done in a fairly straightforward way. If oscillations are detected, the objective

function punishes this behavior by taking on the maximum possible value. The optimization

algorithm is then going to drive the parameter vector away from this (unstable) point in the

parameter space towards regions with lower objective function values.

Let p denote a pair of an input image u and the corresponding desired output image Yd =

Then the modified Hamming distance dm,(p, v) for a given input-output image pair p at a

certain point v in the parameter space becomes

I 4 (y (u,v) - y')2 if the net is stable=mpV -1 (2)

Ii if the net oscillates

where 0 < dm,, _5 1. yc(u, v) is the converged output of cell c, when the net was started with

the input image u from the input-output image pair p, and yc is the desired output of cell c in
the output image of the input-output image pair p. M is the number of cells in the network.

In general, a neural network is required to learn not only one but a large number n of input-

output image pairs pi. Let P = {Pl,... ,p,} denote the set of all input-output image pairs

which the network has to learn. An ideal objective function should average the modified

Hamming distances dm(pi) over all n input-output image pairs pi, but very often this is not

advisable due to the computational cost.

To circumvent this problem, only a subset S C P of all input-output image pairs is used in

the averaging process. This subset S of size 1 < n is selected randomly. Let q = {q1,... , q. }
be a permutation of {1,..., n}. Then the objective function o(v) can finally be written as

I

o(v) = - dn(Pq,, V) (3)
3~l

Again we have 0 < o(v) < 1. It is obvious that a multiple evaluation of the objective

function with v fixed will result in slightly different values. This happens because different

input-output image pairs pi are used for the evaluation of o(v) each time the function is called.
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This random selection can also be viewed as a noise component in the objective function.
This noise component has an important property: it vanishes, if a parameter vector Vopt
has been found, which guarantees a perfect input-to-output mapping of the network. In this
case, the modified Hamming distance between the desired and the actual output will be zero,
no matter which input-output image pairs pi C P are selected during the evaluation of the
objective function.

The noise component in the objective function is crucial to the functioning of the algorithm.
This will become obvious later in this paper. The amount of noise in the objective function
can be influenced by the number of input-output image pairs used during the evaluation of
the objective function. A ratio of - close to one results in a small noise component, and a
ratio close to zero in a strong noise component in the objective function.

3 The Error Surface

Before introducing the LASTNERD algorithm it makes sense to look at some peculiarities of
the error surface, i.e. the objective function o as a function of the parameter vector v.

It is quite obvious that - due to the nonlinear (SIGNUM-) characteristic of each cell, which
assures the binary nature of the cell output - the objective function is only going to change
at those points in the parameter space where xc(k) in (1) is equal to zero.

Rewriting this condition into a more familiar form, we get

x (k) = v ec(k - 1) 0 (4)

where v is once again the parameter vector containing the all the coefficients of the a- and
b-template and the bias i. Tae vector ec(k - 1) combines the respective cell output values
yd(k - 1) and values from the input layer ud from the neighborhood of cell c at time k - 1,

and a constant + 1 for the cell bias. Since the input values are restricted to be binary-val-ed
in this paper, the vector ec(k - 1) will only have binary entries, thus

S-1) ±1 fort=l,...,N-1 (5)S1 for P = N

where N is the number of inputs of a cell and the dimension of v and eC(k - 1) (for an
r-neighborhood on a square grid, N = (2r + 1)2 holds). (4) describes a hyperplane in IR'V,
of which there can be as many as 2 `V-I due to the constraints on the components of ec(k - 1)
in (5).

Thus the error surface consists ot a large number of convex polytopes Ri, which are bounded
by the hyperplanes in (4). The objective function will be constant on these polytopes. Let
ORi denote the hull of polytope Ri. Hence, gradients on the error surface are either zero (for
v E Ri \ OR) or undefined (for v E OR). In addition, ihe objective function is corrupted by
the noise component that was explained in the preceeding section.
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0/ M/ ---- - - -

0.25

a 0 -2 Fig. 2 A 2-dimensional example
of the Alternating Variable method

Fig. 1 A 2-dimensional cross-section through an error
surface of a 3-dimensional example (VT = (a_-1, ao, al))

Fig.1 shows a two-dimensional cross-section through a (N = 3)-dimensional error surface.
The convex polytopes and the noise component of the error surface are clearly visible. Due
to the binary nature of the vector ec(k - 1), the boundaries 8Ri in a two-dimensional cross-
section are always intersecting at right angles or run in parallel.

4 The LASTNERD Algorithm

For the reasons stated above, methods of optimization using gradient techniques like Quasi-
Newton or Steepest Descent methods (see for example [5], [6]) are not applicable.

Direct Search methods are an alternative to gradient search strategies. They are usually more
expensive in terms of the number of function evaluations, but on the other hand, they are
much more flexible.

The LASTNERD algorithm is based on the well known Alternating Variable Method (as for
example described in chapter 2 in [5]). In this method, line searches in parallel to the axes
of the coordinate system are performed repeatedly. A line search procedure is supposed to
find the minimum Omin = o(a .in) of o(a) = O(Vstart + av), where a is a real number and
Vstart, v are N-dimensional vectors (see section 2.6 in [6] for more details on line search
algorithms). The result of each line search is then taken as a new (temporary) optimum. The
whole process is repeated until the objective function falls below a desired level.

Fig.2 shows a simple two-dimensional example. In that figure, the thin solid lines are contour
lines of a function defined over IR2 , and the thin dotted lines show the direction of the line
searches.

Due to the special properties of the objective function, some modifications to the original
Alternating Variable Method had to be made. The LASTNERD algorithm works as follows:



begin LASTNERD
randomize the initial coefficients;
repeat

for for all coordinate axes do
begin

- Normalize the template coefficients;

- perform a line search parallel to an axis of
the coordinate system, starting from the current
optimal point, and keep the result as the new
optimum;

end
until template coefficients have been found

which guarantee a zero (or sufficiently
low) objective function;

end LASTNERD

To avoid any kind of cyclic behavior, the line searches along the different coordinate axes
have to be performed in a random order.

The line searches remain the biggest problem in the algorithm. The function o(a) in the
line search process is a noisy piecewise constant function, which will be very difficult to
minimize. The way line searches are performed in the LASTNERD algorithm is by taking
samples of o(a) from an interval I, around a = 0. Finding the best parameters for this
sampling process is relatively difficult and requires some experience. If the distance between

the samples is too small, than the algorithm becomes too expensive from a computational
point of view. If on the other hand the samples are too far away from each other, the line
search algorithm might jump over "trenches" in the objective function. The size of the interval
around a = 0 is another problem. The LASTNERD algorithm uses a compromise: If the
objective function is still high, a larger interval Ia and a larger distance between the samples
is chosen. As the objective function becomes smaller, the interval [c, becomes smaller and
the sampling rate higher.

Another critical issue is the terminating condition for the algorithm. Due to the noise in the

objective function, a zero objective function does not necessarily imply that the input-output
mapping works for all image pairs. A better idea is to terminate the algorithm, when a number

of consecutive evaluations of the error function have returned the value zero, thus making
sure that a large number of input-output image pairs were tested during the evaluation of

the objective function.

Any nonlinear optimization algorithm is usually prone to getting stuck in local minima. In
simulations of the LASTNERD algorithm, it turned out that the noise component in the
objective function is actually very helpful, since it may help the algorithm to jump out of
local minima. Still, the amount of noise (controlled by the ratio -) has to be determined
expcrimentally, because too much noise in the objective function might prevent the algorithm
from descending to lower objective function values.



5 Experimental Results

The algorithm is working properly for moderate numbers N of template coefficients (around
20 to 30). While M, the number of cells of the neural network, influences only the execution
time of the algorithm, simulations suggest that the performance of the LASTNERD algorithm
deteriorates with increasing N, which corresponds to the dimensionality of the underlying
optimization problem.
The algorithm was tested with well-known problems from literature, like Edge Detection,
Connected Component Detection, Hole Filling, etc.. For these tasks, templates are known
which solve the respective problem. Using a 10 x 5 network with a translationally invariant
1-neighborhood in a- and b-templates and a bias (19 template coefficients), the algorithm
found templates solving the given problems.

The algorithm was finally applied to the problem of straight line (horizontal and vertical)
detection, for which no known templates with a 1-neighborhood exist. The LASTNERD
algorithm was not able to find templates for an error-free operation of the DTCNN, but it
found a suboptimal solution resulting in a very low pixel error rate.

6 Conclusion and Outlook

This paper introduces the idea of mapping the learning task for DTCNNs onto a nonlinear
optimization problem. The method used for solving this optimization problem - a modified
Alternate Variable method - is relatively flexible, but not very efficient, since it does not
take into account the specific structure of the DTCNN.

Still, the fact that the LASTNERD algorithm could find the templates for the examples shows
that learning for DTCNNs can indeed be done in this way.

Currently, more advanced numerical algorithms, among them genetic algorithms, are applied
to the inherent optimization problem. Using these algorithms, some interesting new applica-
tions for DTCNNs were found, which are to be reported in the near future.

Bibliography

[1] Hubert Harrer and Josef A. Nossek. Discrete-time cellular neural networks. Technical
Report TUM-LNS-TR-91-7, Institute for Network Theory and Circuit Design, Technical
University Munich, Germany, 1991.

[2] Gerhard Seiler, Andreas J. Schuler, and Josef A. Nossek. Design of robust cellular
networks. Technical Report TUM-LNS-TR-91-13, Institute for Network Theory and
Circuit Design, Technical University Munich, Germany, 1991.

[3] Fan Zou, Stephan Schwarz, and Josef A. Nossek. Cellular neural network design using
a learning algorithm. In Proc. International Workshop on Cellular Neural Networks and
their Applications CNNA-90, pages 73-81, Budapest, Hungary, December 1990.

[4] Hubert Harrer, Josef A. Nossek, and Fan Zou. A learning algorithm for discrete-time
cellular neural networks. In IJCNN'91 Proc., pages 717-722, Singapore, November 1991.

[5] W. Murray, editor. Numerical Methods for Unconstrained Optimization. Academic Press,
1972.

[6] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, 2 edition, 1987.

85



CNN'92

The Effective Weighting Method of CNN as a Recall

Hikaru MIZUTANI

Electrical Engineering, Shonan Institute of Technology

1-1-25 Tsujido-nisikaigan Fujisawa-city

Kanagawa, 258 Japan

1. Introduction call it a BN-mapping.

It is expected that neural We assume that hk is one

network system such as of the n fundamental

Hopfield neural network memories and that each

(HF-NN) may solve the fundamental memory hk= [hlk

general associative and ... hmk] consists of m

optimum problems. However, elements, each of which is 1

HF-NN's need m2 synapses, or -1.

where m is the number of The energy function of full

neurons in the system. It is connection type NN is

very difficult to fabricate defined by the following

such a large HF-NN. One of equation[3]

the method to solve the E(aD)--x*t Fx/2, (1)

problem is to use Cellar where F is the connection

Neural Networks (CNN) in matrix which is defined as

which the number of synapses n

is determined by dn/2 where k-1

d is the number of synapses where Er is m dimensional

incident to each neurons. unit matrix and the super

But there are synthesis subscript t represents the

problems to determine transport of a matrix. When

weights for association. the full-connection type NN

In this paper, we discuss a recall j-th fundamental

new synthesis method of CNN. memory, a energy Ej is

2. BN-mapping decision presented by

We assume that the Ej-hjstFhj/2. (3)

structure of CNN is fixed. In the CNN which has local

In this section, we discuss connection, the connection

the mapping from each bit of matrix S(F) can be

the data to a neuron. We represented by a sparse

0-7803-0875-1/92 3$.00 @19921EEE



matrix. Though, F is Now, we assume that CNN can

replaced S (F) which is memorize a fundamental

sparse, we must select an memory hi. When the output

optimal function SC(.) of CNN is ht, a input of

from the set of { SI(.) the j-th neuron N3  is

Si=l, ... ). The decision decided by

depend on the BN-mapping. ljI-t ih 1 d3 . (6)

So, we must determine the where dj is a threshold of a

BN-mapping so that the neuron Nj, then

associated energy function h 3i-sign (It )

of CNN can be decreasing as and tj is j-th row element

possible as we can. Because vector of matrix N. If the

there are some fundamental prove vector or the output

memories, we must solve of HF-NN is hi with r bit

min-max problem such that errors, the input of j-th

the largest energy function neuron Ijj' is decided by

can be minimized. That is I 3 1 -2rs•Ij 3 ' :Ijx+2rs, (7)

the max-min problem where s is the biggest value

represented by in the absolute of the

u=min(max(-hjtSi(F)hj/2 elements of matrix N.

lj=l,n ) .i-I,n). It is important that if the

Example right side and the left side

The CNN which is 7X5 array of equation (7) are equal in

structure stores the 12 sign, CNN always correct r

fundamental memories shown bit errors. It means that r

in fig. 2. The connection of is convergent radius of CNN

each neuron is defined in or smaller than it.

fig. 1. By the proposed In this paper, we decide

method, the BN-mapping is such that s-1, and we must

given as fig. 3. determine (At, dil i-l,m)

3. Weight decision so that r equals to rmax

3.1 Convergent radius which is the maximum value

We modify the connection of r.

matrix St (F) to the Note that we can decide s.

following connection matrix Because sign(.) cares only

for CNN; the sign of its parameter.

N=ZA. (S (hxhk•-E.) (4) 3.2 Computing method of the

k1i weight

where By modifying equation (7)

Ak-diag(alk, , aMk). (5) and using s-i, the following
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equations are obtained fig. 4. We have simulated

Ii 1 -2rý0 o hji>0, the associative operation of

Ij1+2r;0 h 1 <O. (8) CNN by using the resulted

And they are modified to weights. Fig. 5 shows the

hj I(Ij 1 -2r) 0. (9) some output pattern with

Condition (9) is applied to weights of the equation (2)

all fundamental memories and and proposed weights. The

all neurons. I.1 is CNN by the proposed

described as following weighting method recalls all

equation fundamental memories, but

IiI= (iak (hskk-J) )ILI the CNN by the using the

k-1 weight determined the

+di. (10) equation (2) can not recall

So, Condition (9) can be it.
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3.3 Example
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the weights are given as
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Fig. 2 Fundamental memories.

0 1 2 3 4

5 6 7 8 9
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30 31 32 33 341

0 9 32 4 26
5 31 22 7 33

11 14 25 13 23
15 1 27 30 24
17 18 20 12 29
21 19 16 8 28

6 3 2 34 10

Fig. 3 BN-mapping of CNN.
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Abstract - Among Artificial Neural Networks, CNN's have experienced an unprecedently
known explosion of researches and applications, due to their unique property of using only
local connections. So their use has become attractive for many purposes. We will just recall:

1. Modeling the physiology of the brain.

2. Modeling the processes of learning and classifying by human beings and animals.

3. Modeling the behavior of large physical systems, usually studied by means of statistical
mechanics.

4. Using them as a new paradigm for very powerful electronic computers, well suitable to
be implemented using VLSI.

As engineers, we are mainly interested in the last item, but it is important to not forget
the strong links that exist between this item 4) and the preceding ones. Considering such
links could make easier finding solutions to the many questions still open in the systematic
design of CNN's.

The purpose of this talk would be starting a fruitful discussion on the answers to the
following three questions:

1. What CNN's are? (i.e. definition)

2. How do CNN's operate? (i.e. behavior)

3. How they store information?

DEFINITION - No matter to say that everyone of us has a well defined idea of what a
CNN is. But it is to notice that the many contributions that appeared in the literature after
the first papers describing the pioneering work carried out at the University of California,
Berkeley, generally do not comply with the definition given in those early papers. So we will
try to investigate in a systematic way which items are essential properties of CNN's. As a
conclusion it seemed us logic to identify the following three:

1. A regular array (not necessary bidimensional) of identical cells.

2. Links limited to a very restricted neighborhood.

3. Dynamics of each cell described by a nonlinear differential equation.
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BEHAVIOR - Regardless of the particular kind of neural network under consideration,
we may look at it as to a black box with vn input and an output. Its purpose is to process the
information contained in the input signal in order to obtain some specific result as, e.g., to
recognize patterns, to classify data, to detect moving objects, to solve a problem of minimum,
etc. This means that the network maps the space of all the admissible inputs into the space
of its outputs according to some well defined rule.

In the said operation we may notice that many different circumstances can occur, such
as, e.g.:

1. The network is a dynamic system described by a (vector) differential equation (au-
tonomous or non autonomous).

2. The network implements an equation that can be explicitly solved with respect to the
output, that turns out to be a function or a functional of the input.

3. Parameters of the equation may be constant or not.
4. Input signal may be fed through the initial state, or the forcing function, or the parameters.
5. Output may be drawn in many ways. If the output is an attractor, it may be of different

kinds, even strange.

We will try to pick up connections between the different ways of operation and the
definition of CNN's, as far as it is relevant to their behavior in storing and processing
information. INFORMATION - Programmability is one of the most attractive properties
of CNN's, but how to choose the most suitable network and how to program it in order to
perform a given task, is still an open question. A step towards its solution could be to have
an insight into the kind and the amount of information that a CNN is able to store. In fact
it is well known that, due to the distributed way of storing and processing information, the
organized structure of a neurocomputer adds significant relations to data fed to it. E.g., in
the case of programming by examples, this is the reason why it is able to generalize from
a limited number of training inputs.

Elsewhere we introduced the concept of "relational information" as a peculiar property
of neurocomputers and suggested methods for measuring it. As a conclusion of this talk we
will start discussing how such a concept can be applied to CNN
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ABSTRACT

In this paper some stability properties of cellular neural networks with delay (DCNN's)
are studied; reciprocal and non-reciprocal DCNN's are considered. It is shown that a
symmetric DCNN can become unstable if the delay is suitably chosen; moreover a
sufficient condition is presented to assure the complete stability: such a. condition
establishes a relation between the delay time and the parameters of the network. A
sufficient condition for the complete stability is also given for non-reciprocal networks:
such a condition is independent from the delay time and depends only on the cloning-
template and the delay-cloning-template.

1. INTRODUCTION

Cellular neural networks (CNN's), introduced by L. 0. Chua and L.Yang in 1988 [1],
[2], have found important applications in signal processing, especially in static image
treatment. The stability of such networks has been investigated in [1], [3] and [4]:
in [1] it has been proved that symmetric CNN's are completely stable; in [3] a weaker
property (stability almost everywhere) has been established for the class of the positive
cell linking templates and this result has been extended in [4], by means of equivalent
transformations.

Processing of moving images requires the introduction of delay in the signals transmit-
ted among the cells (DCNN's) [5]. The study of stability in this case is much more
difficult than for conventional CNN's. In [6] it has been proved that positive cell link-
ing templates are stable almost everywhere. In this paper we use the technique of
the Lyapunov functionals to study the dynamic behaviour of two types of DCNN's.
Firstly we consider a symmetric CNN and suppose to introduce a delay among the
cells; we will prove that a symmetric CNN with delay can become unstable if the delay
is suitably chosen and we will give a sufficient condition in order to ensure complete
stability. This condition relates the parameters of the network to the introduced delay
r. Then we study a general non reciprocal DCNN, with the constraint that any signals
interchanged between a couple of cells is delayed, while the feedback of a cell on itself is
not delayed: in this case we derive a sufficient condition to ensure the complete stability
of the network.
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2. CELLULAR NEURAL NETWORKS AND CELLULAR NEURAL NETWORKS
WITH DELAY

In order to study the stability properties of a DCNN, let us compare the state equation
of a CNN (Cellular neural networks without delay) with the one of a DCNN (Cellular
neural networks with delay). Given a Al x N CNN, after having ordered the cells in
some way, the state equation can be written as follows:

i = -x+ Ay+Bu (1)

where:

x, .i" E R"IxN are the state vector and its derivative;
y E R"JXN is the output vector;
u E RM×xN is the input vector;
A, B E RMXxNM×N are matrices, derived from the feedback template and from the
inp u t template [5].

Equations (1) is a system of differential equations of the type:

;i = f(x)

where f is a mapping from RMxN to RMxN.

The state equations of a Tr-delayed DCNN, by proper ordering of the cells, can be
written as:

i(t) = -x(t) + Aoy(t) + Aly(t - r) + Bi (2)

where Ao, A1 , B E RAIxNMxN are matrices, derived from the feedback template, the
delay cloning template and the input template [5].
Equation (2) is a particular case of the general functional differential equation [11]:

i = f(xt)

f E C(C([-ir, 0], xMXN), RMxN) is a continuous mapping of the space of functions xt
into RAfX.

We study the stability properties of DCNN's described by equation (2). To simplify
the proofs, we assume that u = 0.

Definition 1: A dynamical autonomous system is said to be coml)letely stable if and
only if, for any initial point in the state space, the (unique) forwards trajectory reaches
a stable equilibrium point.

According to our previous notations, the state space is RA.IxN for a system without
delay and C([-r, 0], RAIxN) for a system with r-delay.

3. SYMMETRIC DCNN'S

The complete stability of a symmetric CNN without delay, described by equation (1),
has been proven in [1] by introducing a suitable Lyapunov function, i.e. a mapping
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of RIAXN into R. When equation (1) is replaced by equation (2), such a. function can
be replaced by a suitable Lyapunov functional, i.e. by a mapping of C([-r, 0], RfAxN)

into R [11].

Definition 2: We define the following Lyapunov functional:

V(xt) = y'(t)Py(t) - j[y'(t + 0) - y'(t)]A'lf(O)Al[y(t + 0) - y(t)]dO (3)

where f(0) is any scalar function continuous with its derivative on [-7, 0], f E CI([-r, 0], R)
and P = -I + A0 + A1 , A' is the transpose of A1.

By means of such a functional, we can find a sufficient condition for the complete
stability of DCNN's in terms of the euclidean norm of A1 , which we denote as IIA111,
and of the delay r.

Throrem 1: If A1 is invertible, P is symmetric and:

IIA1ll < - -(4)
3r

then the corresponding DCNN is completely stable.

Proof: see [12].

Moreover it is possible to find a symmetric DCNN and a delay T, where the above
condition is not verified, which can oscillate.
Consider the following dynamic equations of a (2 x I)-DCNN:

dxldt -x(t) + ao1yi(t) + a 2y2(t) + alhyi(t - r) + a72Y2 ( - T)

dx 2 Id x 2(t) + a 2yl(t) + aO1y2(t) + "12yi(t - r) + a11y2(t - r)
dt

Suppose the cells are working in linear region, i.e.:

i(t) = Hx(t) + Alx(t - r) (5)

where

h1 a012

0t= a12 h

1 12

= a 1 2 a11

and h = al- 1 > 0.

Thus the eigenvalue equation for an arbitrary delay r is:

det(H - Al + A, exp(-Ar)) = 0 (6)



It is possible to show (see [12]) that by choosing:

h > 0

0 < (02 < I

(112 < 0

the eigenvalue equation has one imaginary solution, while all the other infinite solutions
have negative real part: this means that the system admits of a stable closed orbit and
thus can oscillate. In [12] it is shown that in this case the condition stated in Theorem
I is not verified.
If all the parameters of the template and of the delay-template are positive, the sys-
tem admits of a closed orbit, but this latter is not stable (this is the case of the
cooperative-irreducible DCNN, dealt with in [6], where the stability almost everywhere
can be assured).

4. NON RECIPROCAL DCNN'S

Let us consider a DCNN, described by state equations (2), where: H = A0 - 1 = Hi is
diagonal, A, is a general matrix (even non symmetric) and u = 0: this means that all
the signals interchanged between the cells are r-delayed, while the feedback of a cell
on itself is not delayed.

Thcoremi 2: If the diagonal element of H, h, is greater than the sum of the moduli of the
elements of the delay-cloning-template, then the corresponding DCNN is completely
stable.

Proof Let us introduce the following Lyapunov functional:

V(xt) = X'(t)x(t) - jr x'(t + 0) c x(t + O)dO (7)

where c is a scalar constant.

Suppose the system starts from an initial condition, xo(O) E C([-r. 0],RAfXN) 9 E
[-r, 01, -uch that for any 0 E [-r, 0] all the components of x0 are less than 1; i.e.
all the cells are working in the linear region. Note that if a cell reaches a saturation
region, under the hyphotesis of theorem 2, it cannot leave this latter; thus the above
hyphotesis can be done for the remaining cells.

The derivative of V(xg) yields the following expression until all the cells are working
in the linear region:

V((Xt) = [x(t),x(t - r)][ 2H-c ] [ X( ] (8)
T A'e c nqta-ir)ty

The above expression satisfies the following inequality:
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[21:- c -1IA111] 1.1(01 ](9
f"(10 >_ [I.X(t0 , jx(t - r)j] -11A111 c I.•j(t - r)I

The positivity of 17 is assured, by Silvester test, if:

2h.- c > 0 (10)

c 2 - 2hc + 11AI l2 •< o - h > IIA11. (11)

It is easy to show that an upper bound of the norm of A, is given by the sum of the
absolute values of the elements of the delay-cloniing-template, which in the following
will be indicated as S. By choosing a suitable value of c, the condition h > 5 assures
that the derivative of the Lyapunov functional is positive everywhere and this means
that at least one cell will reach the saturation region. Since h > S, if the state of a
cell Xri reaches the value 1 or -1, it remains in the saturation region, regardless of the
values of the state of the other cells; therefore such a cell becomes a constant input for
the system. In fact by supposing that the cell i reaches a saturation region, the state
equation of the system can be written as:

.i = hlrt(t) + A~'xY(t - r) + ui' (12)

where:

.i'2(t)

x, .(t) = i-al(t) (13)

XMxN(t)

A" is obtained from A1 by deleting the i-th row and the i-th column; the constant term
ui is obtained by multiplying the i-th column of A, by the saturation value of the i-th
cell, yj = ±1. By putting

z2(t) - x-(t) + (hI + A' 1 u (14)

the state equation of the system assumes the form:

"?(t) = hlzI(t) + A".z(t - r) (15)

By using the same Lyapunov functional shown above it is possible to show that another
cell must reach the saturation value and this procedure can be apl)lied until all the cells
have reached the saturation region. From this latter consideration, by using the same
arguments of [11, the complete stability of the system can be derived. Note that the
etsbilished condition of stability h > S is valid also when a constant input is introduced
in the state equation (2). QED
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Abstract

Since a Cellular Neural Network (CNN) is a nonlinear analog circuit,
its solutions may have a complex dynamical behavior, from complete
stebidity to chaos. This paper will show that this behavior may depend
strongly on the boundary conditions set at the borders of the finite-sized
CNN, the network being stable with some boundary conditions and un-
stable with others. We will then distinguish two kinds of completely
ur.itable CNNs: those that are unstable because of the boundary condi-
tions and those that are unstable because of the template that defines
them regardless of the boundary conditions.

1 CNNs with boundary conditions

The architecture of CNNs is described in [1]. We will consider CNNs defined
by a space-invariant A-template, without a B-template and with I = 0. They
are therefore described by the state equation

ii(t) = -Xj(t) + E Am,, y,+m.+n(t)
m,n=-r

and the output equation yij(t) = f(xi(t)), where the piecewise-linear function

f(.) is given by f(v) = 1 (1v + 11 - Iv - 1i) and r is the size of the neighborhood.

We will surround the rectangular array with boundary cells, whose outputs
lic between -1 and 1 and remaini constant, with respect to time t. The width of
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this frame of boundary cells is equal to r. Their outputs will be referred to as
the boundary conditions (Up to now, in most applications using CNNs, these
boundary conditions have been set to zero most of the time).

2 Two kinds of completely unstable CNNs

A CNN is completely stable if every initial state converges to an equilibrium
[2]. Likewise, a CNN will be said to be completely unstable if no initial state
(except possibly a set of measure zero) does converge to an equilibrium.

Consider first a CNN with a neighborhood of size 1 (and cells arranged on
a squared or hexagonal grid). Then we have the following result:

Theorem 1 A CNN whose neighborhood size is 1 always has a stable equilib-
rium provided the boundary conditions are correctly chosen.

For such a CNN, one can indeed show that at least one of the four configurations
shown in figure 1 is always a stable equilibrium of the network. A black pixel
corresponds to an output of 1 while a white pixel corresponds to an ouput
equal to -1. This theorem is a corollary of a theorem proven in [3], which states
that a CNN, with an array of cells of infinite size and an A-template such that

Em and n even Am,n > 1, has always a stable equilibrium.
Consequently, if a CNN defined by a 3 x 3 template is completely unstable,

we can modify these boundary conditions (by picking one of the four sets of
boundary conditions represented in figure 1), so that this CNN does not remain
unstable any longer. This implies that the complete instability of such a CNN
is always due to the boundary conditions. It is possible however to find CNNs
with a neighborhood of size 2 that are completely unstable, independently of
the boundary conditions:

Theorem 2 A one-dimensional CNN, of at least 37 cells, and defined by a
template

A= [ A- 2 A-, Ao A, A2

where AO > 1 and

A-2 + A-, + Ao + A, + A2 < 1

A- 2 - A-, + Ao- A, + A2 < 1
A- - A- + A+A 1 - A2 < 1

-A-2 - A-, + Ao + A1 - A2 < 1

-A-2 - A-, + Ao + A, + A2 < 1

is completely unstable, regardless of the boundary conditions.

. ... .. .



Boundary conditions

Figure 1: One of these four configurations is always an equilibrium of a CNN
with a neighborhood size equal to 1.



The instability of this CNN is thus no longer due to the boundary conditions
but is a characteristic of the template itself.

This theorem is also a corollary of a more general theorem proven in [3].

3 Examples

Example 1. The one-dimensional CNN defined by the template

A=[-s p s ]

is known to be completely unstable if 0 < p - 1 < s and if the two boundary
conditions at both ends of the linear array are set to zero [4]. Nevertheless,
since A is a 3 x 1 template, there exists a stable equilibrium if the boundary
conditions are properly chosen, because of theorem 1. In fact, this happens
when the boundary conditions are set to 1 or -1, as pointed out in [4] and [5].
Moreover, this CNN can be proven to be completely stable with such boundary
conditions, if its number M of cells is less or equal than three. For M = 1 and
M = 2, this can be easily proven. Take M = 3 and, for instance, the boundary
conditions yo = 1 and y4 = -1. The state equations describing this CNN are
thus

5i1(t) = -xi(t) + pf(xi(t)) + sf(x2 (t)) - S (1)

i 2(t) = -X 2(t) - sf(XI(t)) + pf(x2(t)) + sf(X3 (t)) (2)

i3(t) = -X 3(t)- sf(X2(t)) + pf(X3(t))- s. (3)

Since sf(x2 (t))- s < 0 and -sf(X (t)) - s < 0 for any time t, corollary 2 in [6]
implies that if xI(to) < 0 at some time to, then there is some time to < t' < +oo
such that yi(t) = -1 for all t > t', whereas if x3(tl) < 0 at some time tj, then
there is some time tj < t' < +oo such that y3(t) = -1 for all t > t'. In these
two cases, the network is equivalent to a CNN made of two cells, with boundary
conditions equal to ±1, which is completely stable.

We will now see that one of the two states xl(t) or x 3 (t) must become
strictly negative at some time t2. Suppose on the contrary that xl(t) > 0 and
x3 (t) > 0 for all time t. Then by adding (1) and (3), we get

il(t) + i 3 (t) = -(xl(t)+ x 3(t))+p(f(XI(t))+ f(X 3 (t)))- 2s < 2(p- 1 - s) <0.

Hence xI(t 2) + x3(t2) becomes strictly negative at some time 0 < t2 < 0o,

implying that xi(t 2) < 0 or x3(t2) < 0. Consequently this CNN is completely
stable.



Example 2. The one-dimensional CNN defined by the template

A=[-s v p s 01

is also completely unstable if p > 1, v > 0 and s > p - 1 + v and if the
four boundary conditions are equal to zero, but has a stable equilibrium (every
steady-state output being equal to 1) if the four boundary conditions are set
to 1.

Example 3. Another way of introducing "boundary conditions" is to con-
nect the first cell of a one-dimensional array to the last one, making a ring. If
such a CNN is defined by the template

with s > p - 1 > 0, it is completely stable if its number of cells is even
but completely unstable if its number of cells is odd! Note that without the
additional connection between the first and the last cell, this CNN is completely
stable for any number of cells, and for any values of the steady outputs of the
boundary cells, since this template is acyclic [7].

Example 4. In contrast to the three previous examples showing CNNs
whose stability depends on the boundary conditions, the CNN defined by the
template

A -pp p -p 0]

where p > 1 is always completely unstable if its number of cells is sufficiently
large, regardless of the boundary conditions, since it satisfies the set of inequal-
ities of theorem 2.

4 Conclusion

The two theorems presented in this paper show that some CNNs are completely
unstable because of the boundary conditions, and will not stay completely
unstable if we change these boundary conditions properly; whereas other CNNs
(with a neighborhood size greater or equal to 2) are always unstable regardless
of the boundary conditions.
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Abstract
This paper outlines a proof for the convergence of reciprocal Time-Discrete Cellular

Neural Networks with continuous, monotone increasing nonlinearities. The proof uses a
Lyapunov function of the Time-Discrete Cellular Neural Network.

1 Introduction

The operation of every Cellular Neural Network (CNN) is based on dynamic transitions of the
state variables which transform a given initial state into a desired output state. Consequently
the analysis of CNN stability and convergence is a very important topic in CNN theory.

Up to now convergence for Time-Discrete CNNs with a threshold-type nonlinearity and
eigendominant or single-neighbor dominant templates has been proved by Harrer and Nossek
[1],[2]. Hui and Zak [3] proved the convergence of Time-Discrete CNNs with a piecewise linear
output function and feedback operators which comply with:

M-1 N-1 M-1 N-1
(i i)- > IA(i,J;k,'1+ 1 , B(i, j; k, l),k,L + d,,j (1)

k=O 1=0 k=O 1=0

for all possible inputs ui,j.
This paper outlines a proof for the convergence of reciprocal Time Discrete CNNs with

continuous, monotone increasing nonlinearities. The required constraints for the feedback
operator values are less restrictive than those given in equation 1.

2 Architecture of the Time-Discrete CNN

A two-dimensional and reciprocal Time Discrete CNN of M x N cells can be described by
the following equations:

State Equation:

M-1N-1 M-1N-1

z,,j(n + 1) = Aa,.j;k, L)yk,,(n) + • 3 B(i, j; k, l)uk,l + d,,j (2)
k=O 1=0 k=O 1=0

forall i=0,1,...,M-1; j=O,1,...,N-1
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Output equation

J 1 for zij(n) > 1
y.j(n) = f(zj(n))= j(zi(n)) for jzl=j(n)j < 1 (3)

-1 for Xz,j(n) < -1

with 0 < d9() < oo for zI1 < 1 and df(z) 0  for II=1dz dx

Parameter assumptions

"* Reciprocity of feedback operators

A(i,j;k,l) = A(k,l;i,j) for all i =0,1,-..,M- 1; j=0,1,---,N- 1;
k 0,1,..,M- 1; = 0,1,..,N - 1 (4)

" Constraints for feedback operator values
M-1 N-i

A(i,j;i,j) > E E IA(ij;k,1)1 for all i = 0,1,...,M-1; j = 01,---,N-1 (5)
k=O 1=0
k96i 10i

Remark:

1. This constraint for the feedback operator values is sufficient but not necessary to
guarantee convergence to the equilibrium states. It will be derived from a less
restrictive constraint in paragraph 5.

3 Matrix-Vector Formulation

It is convenient to describe the dynamics of the Time-Discrete CNN with a matrix-vector
notation which can be derived from equations (2) and (3) by ordering the output variables in
a rowwise sequence:

M.N M.N

X,,(n + 1)= E A(v, u)Y•,(n) + E B(v, p)U, + D. (6)

and

Y•,(n) = f (X•,(n)) (7)

with

XiN+ = zi,j (8)

N+j = YJ (9)
A(iN + j, kN + l) = A(i, j; k, l) (10)
B(iN + j, kN + 1) = B(i,j;k,l) (11)

DiN+j = d (12)

for all i=0,1,..-,M-1; j=0,1,...,N-1;
k =0, 1,..., M- 1; 1 0, 1,..., N- 1

(13)

Remark:

1. Observe that A(v, #) is symmetric (i.e. A(Y, p) = A(p, v)) because of equations (4) and
(10)
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4 Convergence of the Time-Discrete CNN

The proof uses the following Lyapunov function (bounded, monotone decreasing pseudo en-
ergy function) of the Time-Discrete CNN:

V(Y(n)) = - Y•,(n) 2 A(v, )Yj(n) + E B(v, I)U,,, + D,) + E 1 . g(y)dy
V=O U•=0 $A=O &,=O

(14)
with

for y=-
g(y) = -I(y) = z for IyI<1 (15)

1 ~ for y= 1

The boundedness of V(Y(n)) is shown in the same way as in [4]. The proof of the
monotonicity deals with the first difference of V(Y(n)):

M-N /M.N M.

AV(Y(n)) = - • AY,(n) 2 A(v, p)Y,(n) + E B(v,p)U,+ D3 ,
V=O ( 1=0 IA=0

1 M.NM.N

-2 E A(v, ,)Y.v(n) A Y,(n)
&=--0 IA=0

1 M.NM.N M.N Yv(n+l)
-2 •_ _A(v, A) A Y•,(n) AX Y•,(n) + •--J,() g(y)dy

,,=O U=O ,=O fvn

According to the symmetry of A(v, p) anti the mean-value theorem of the integration this
results in:

M.N M.N M.N

AV(Y(n)) = - • AY*,(n) E A(o .(,)Y,.(n)+ =B(v,p)U. + Dj,
"= PO AO/

1 M.N M.N M.N

-2 E , A(vj,) A Yv,(n) A Y,.(n) + E (Yn( + 1) - fv(n) G)
V=0 J•=O v=0

with . = Y,(n) + 7 Y,(n) and 7y, e [0, 1].

Therefore:
M.N (M.N M.NAV(Y(n)) = - AY(n) (MA( )Y(n) + o B(v i)U; + D, -g

M.NM.N

-2 r E A(v,j) A Y,(n) A Y. (n) (16)
L'=O ;A=O

The proof of the monotonicity of V(Y(n)) is based on the following theorem which will
be derived in the appendix:
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Theorem 1 If A(v, IA) is a symmetric, positive semidefinite matrix then the following in-
equality is valid for ý, = Y1,(n) + %, A Y, with 7-, E [0,1] and for all n > 0:

- j AY.,(n) E A(vp)YM,(n) + E B(v,pu)U. + D. -

1 M.NM.N Y+

2_ E E A •(v,,u) A Y,(n) A Y,,(n) (17)
Y=O U=0

where the identity is valid if and only if AY,,(n) = 0 for all v.

Inserting equation (17) into equation (16) results in:

A V(Y(n)) < 0 (18)

which means that V(Y(n)) is monotone decreasing. The identity is valid if and only if

AY1,(n) = Y`,(n + 1) - Y,(n) = 0 for all v.
Every bounded, monotone decreasing sequence is convergent, i.e.

lrn V(Y(n)) =const. (19)
n-=#oo

and therefore
lim AV(Y(n)) = 0 (20)

n--+coo

According to equation (18) AV(Y(n)) = 0 corresponds to Y1(n+ 1) = Y1,(n) for all v and
all n which means that the Time-Discrete CNN converges towards an equilibrium.

5 Positive semidefiniteness of A(v, !L)

The proof in paragraph 4 requires that A(v, p) is positive semidefinite. A sufficient but not
necessary condition for this can be derived from the theorem of Gerschgorin:

M.N
A(v, Y) ,IA(vp)l for all v = 0,1,.-.,M.N (21)

AjO

Because of equation (10) this results in the following restriction for the original feedback
operator values:

M-1 N-1

A(ij;ij) > E E IA(i,j;k,l)l for all i= 0,1,...,M- 1; j = 0,1,...,N- 1 (22)
k=O 1=0
,#i 1#j

This restriction is fullfilled by most of the known feedback operators (e.g. noise removal,
edge and corner detection, motion detection).
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A Appendix: Proof of Theorem 1

The proof is based on the following theorem:

Theorem 2 AY,(n) = Y1(n + 1) - Y,(n) has the same sign as

M.N M.N

SA(v, j)Y (n) + E B(v, j)U. + D., - g(4)

i.e. the following equation is valid for all v = 0, 1, ... ,M . N:
(Y\=M'N M.N

AY,(n) = Y,(n +1) - Y,(n) = , (-:A(v,li)Y.(n) + Ej B(,v, )U. + Dz, -

with a,> 0

Proof of Theorem 2 :
Inserting the state equation (2) and the output equation (3) into the first difference AY•,(n)

results in:

M•-•\=N M.N

AY,(n) = f , A(v,1)YA(n) + E B(,v, )U, + D.- Yv(n)

f(M .N M'.N

= ] (: A(V, pY (n) + E B(,v,p)Up + D, + g(4) -g(&)) - Y.,(n)

The Taylor's expansion of f(e) at g(G) is given by:
M.N M.N d(z)

SY = Y((f ( )) - ( ) + ( ,A( Y, p)Y ,(n) + , 8(Y p)U u+ + D - do,

Consequently with f (g(f4)) = &4 = Y3,(n) + 7, A Y1(n):

M.N M.N
(1-T)AY.(n) = Y.(n)-Y.,(n)+ F,__ A(v, p)Y,(n) + , B(Y, p)UA + D. - df(zv)

( (0+ $4=0dz

Therefore with av, = 1/(1 - 7y') -df/dz > 0:

AY.(n) = A(v,p)Y,.(n) + B(v,p)Up + D., - g(&,) at, q.e.d.
(\- p.=o o
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Proof of Theorem 1:

Case 1: Y,,(n + 1) = Y,(n) i.e. AYL.(n) = 0 for all iv:
Both sides of the inequality (17) are zero and therefore identical.

Case 2: Y,(n + 1) $ Y,(n) i.e. AY,(n) $ 0 for at least one v:
Therefore according to theorem 2:

M.N M.N
a. 0 and E A(v,qs)Y.(n) + E B(v,s)UA + D. - g(ý,) j 0

Inserting this into the inequality (17) results in:
M.N (M-N M.N

- AYz,(n) E (v,4%,(±n) + E B(v,1s)U + D. - g(ý.)
V=0 ( /A=0 A•=0

M.N M.N M.N)2

-E 0 1( : (,A)Yi n) + E B(V, /I)U + D., - g(.))
V=0 ( j=0 tA=0

1 M.NM.N

2 0 , E .A(v, p) A Y.,(n)/ ArYvAn) q.e.d.

the last inequality is valid because A(v, p) is positive semidefinite
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Abstract. The paper presents a graph-theoretic method for computation of the number of stable equilibrium

points and analysis of the structure of CNN equilibrium set. The considerations are based on one dimensional

CNN layout. The total number of these equilibria, referred to as "output capacity" is shown to be equal to the

number of paths in a graph derived from neighborhood consistency conditions. It may vary vastly depending

on interaction weights and bias current of the cells. It is noted that output capacity equal to zero implies

oscillations of the CNN state.

Introduction
The number of stable equilibrium points is one of major determinants of the signal

processing capabilities of CNN. It gives the upper limit of the number of possible different

outputs produced by the network, i.e. maximum number of patterns that can be retrieved, and

is henceforth termed also "CNN output capacity". The structure of the set of equilibria is

also practically very meaningful and puts constraints on the classes of patterns that can and

can not be expected to emerge as the result of network computations. In the following, the

algorithm is presented for computation of the number of different output vectors and used to

study their dependency on some parameters of the network.

Notation, The cellular neural network considered is composed of N linearly ordered neurons,

each governed by the state equation

t r 1 + Af (x) + .i , Ix(o)151 , i=l..N (1)

in standard notation [1,2]; f is identity function saturating at ±1; J, is bias current; rC

positive constants; vector A=[A.,..,A4,..AA] denote interaction mask in neighborhood of size

k. For brevity we write x,y instead of standard V., Vy. Under relatively mild condition

(Ao> I1r) [1,3], state trajectories converge to stable equilibria, given by

x, = rE Ajf (x) + U, lxIlz, i=1..N. (2)
JENKID

where U=rJ and tentatively assumed Ji=J=const. Any equilibrium satisfying IxI >1 for

0-7803-0875-1/92 3$.00 019921EEE
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every cell i=1..N is stable. In signal processing setting CNN transforms the initial state

x(t=O) (input) to one of its stable equilibria x(t= oc) and produce stable binary output vector

y=f(x). The actual transformation implemented depends upon the selection of masks A and

bias currents J (which may include the contribution of masks B [1]). It was assumed that

r,C=l and neighbourhood radius k=1 in presented examples.

The algorithm of "output capacity" calculations
In order to find all stable equilibrium points of the CNN for given mask and bias

current, we first determine all possible, stable neighborho..ds for every cell, and then

concatenate them to obtain full state vector.

In the first step, consider the state x of a typical cell and its neighborhood. Let z, =

sign(x5 ) and z=[z-k,..zo,..zj] denote a binary pattern of output states in the neighborhood of

a neuron spanned by mask A, positive states corresponding to zi= +1 and negative to z,=-l.

There exist 2`•+ different patterns z, and each of them can be conveniently represented as a

unique binary number (-1 stands for binary digit 0). We mark by z+, z- respectively center-

on (zo= +1) and center-off (zo=-1) neighborhood patterns. For example, if neighborhood

radius k=1, eight different cases of z can be enumerated

four center-off
o=[-,-,- 1 =-,-,+] 4=[+,-,-] 5=[+,-,+]

and four center-on
2=[-,+,-] 3-[-,+,+] 6=[+,+,-] 7=[+,+,+].

The equilibrium conditions (2) allow only of some of them to exist in a stable output. To

determine those configurations, termed "admissible neighborhood patterns", we write local

equilibrium conditions for a cell and surrounding neighborhood as an alternative

E(z ) > 1-U or E(z-) < -1-U (3)

where the quantity

E(z) = rI_, zj A. (4)
JEN

represents "excitation level" of the center neuron, received from its neighborhood, given

neighborhood pattern z.

In the second step of the algorithm we consider the total number of N dimensional

CNN output vectors that can be composed of (2k+]) dimensional patterns z satisfying

conditions (3). Conceptually, any such vector can be built by putting a number of admissible



neighborhoods together in the string, starting from leftmost boundary cell to the right. If the

network is spatially homogenous i.e. parameters A, U are identical for all the cells, the sets

of admissible neighborhoods are also identical; otherwise admissible neighboroods have to

be recomputed for every cell. For 1-neighborhoods the process is illustrated below

-1-+ - - + --

The pattern 5=[+-+] can be followed by 3=[-+]+ (as showed) or alternatively by 2=[-+-

], but not by any other.

In general, the sequential process have to fulfill the constraining requirement that the

patterns around two neighboring center cells should be identical except the left boundary cell

of the preceding and the right of the following one.

This constraint can be expressed in the

form of the neighborhood matching graph

(G). The nodes of G correspond to

admissible neighborhood patterns z and are

marked with appropriate binary numbers. 0 4 5 a 7

Two nodes ij are connected by a directed

branch from i to j if pattern i can be

followed (on the right side) byj. The full 0 1 2 3 4 5o6 7

0 1 1 000 00 0
neighborhood matching graph and its nodal 1 0 0 1 1 0 0 0 0

2 00001100

incidence matrix M for 1-neighborhood is M 0 a 0 o o 0 0 0 11

presented on Fig. 1. Note that it is 4 1 1 000000
5 00 1 100 0 0

independent on network parameters, except 0 0 0 1 1 0 0 0

of neighbourhood radius, and its branching 7 0 0 0 0 0 0 1 1

structure results from the properties of

binary numbers. If some nodes are non

admissible due to stability requirements (3) Fig. 1 Full neighborhood matching graph for

their corresponding rows and columns are neighborhood of radius k=) and its incidence matrix.

set to zeros.

The central point of proposed algorithm is that the number of stable configurations of

a segment of one dimensional CNN. composed of N cells. is equal to number of paths of

lengt N-1 in the graph G (with non admissible nodes deleted). By a graph theoretic

assertion (see e.g. (4], Theorem 9.10) this number, K, is the sum of all elements of nodal

•~~- 'L. I•• • m m m m , m ,l |l



incidence matrix M of graph G, taken in (N-1)th power. Writing K=MN we obtain

S= E(5)E (M N),j
ij ij

The number of equilibrium states with given boundary neighborhoods ij (possibly identical)

is equal to K,=(M•),.
The above holds if the sets of admissible neighborhoods are identical for all the cells;

if this is not the case, then to each cell corresponds the separate set of admissible nodes and

the expression for matrix K is the product of appropriate reduced matrices M,

K=M 2 *M3 *... *MN (6)

where each M, preserves only branches from nodes admissible for the (i-1)th cell to nodes

admissible for the ith cell; all other entries in full M are set to zeros.

Numerical examples and some implications for signal processing
Using the above algorithm the values of K, were computed for selected cases of

networks with neighbourhood radius k=1, with Ao=2, N= 10 and A4, A1 varying in the range

(-2,2). The output capacity of such a family of networks (Fig. 2) may assume one of fixed

values (4,24,466,4096) and thus the numbers of CNN equilibria may differ by several orders

of magnitude depending on the values of interaction parameters A. The maximum of output

capacity is attained for both interaction weights close to zero (middle part of the picture); the

second largest value (466) is attained for approximately symmetric weights. With increasing

N one observes combinatorial explosion of capacity due to multiple loops in G.
The actual input - output

transformation implemented by CNN

depends upon interaction mask A and bias
U. With U,=U and fixed A, parameter U
controls the number of stable equilibria and

their domains of attraction, thus changing
the structure and number of possible

outcomes of network computations and
possibility to distinguish between different Fig. 2 Log2(K,) (vertically) versus weights A.,,A,

inputs. As demonstrated by numerous E(-2,2)(horizontalplane);AO=2;U=O;N= 1O;viewfrom
above (0,0).

simulations [2], the same mask may give

different outputs depending on the bias U. Considering possible paths in the graph G allows

for analysis of this influence and prediction of some aspects of the network behavior without



time consuming simulations and tests. As an example consider the mask A=[1,2,1]. The

admissible nodes and numbers of equilibria K, are presented in Tab. 1.

On the base of analogy with Table I Capacity and admissible neighborhoods for A=[1,2,1].

classical FIR filters, it is

expected to result in state x(oo) admissible capacity K,

being a low pass filtered and U neighborhoods N= 0I1N=20

thresholded variant of input i.e. (-0 0,-3) {0,1,4,5} 4/4

the states of neighboring cells (-31) {0,1,2,4,5,7) 5/5

tend to be of the same sign,
sotig ot mnr (-1, 1) {0,1,4,3,6,7} 466/57314smoothing out minor

discontinuities and noise in the (1, 3) {0,2,3,6,7} 5/5

input. One sees that this can (3, oo) {2,3,6,7} 4/4

take place only for U in (-1,1)

because only there both "flat"

patterns 0=[---] and 7=[+ + +] are admissible and connected. Otherwise, every input x(0)

gives either extremely ragged or saturated, flat output. Note that although both 0 and 7 are

admissible also for U in (-3,-1) or (1,3) there is no path between them so they can not coexist

in single state vector (comp. Fig. 1). The state space is partitioned onto K, different

domains, each leading to a different output.

Generally, it may be expected that if the application puts some constraints on the

structure of desired outputs, in the similar manner the range of U can be inferred from the

analysis of the graph of admissible neighborhoods and resulting capacities.

The mapping of input into an equilibrium fails if output capacity equals to zero. In

fact, K,=O implies oscillations, as the CNN state trajectory is bounded and there are no stable
equilibria (the algorithm counts critical points of (1) with all cell states outside unity, but

A0> 11r assures instability of any others). This situation usually arises due to constraints

introduced by network boundary cells, splitting the admissible nodes into non-connected

subsets.
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Abstract

Space-varying Cellular Neural Networks (CNN's) are characterized by nearest-neighbor

interconnections represented by a cell-dependent connectivity matrix A ij. This biologically-

inspired architecture has many potential applications. In the paper an associative memory

design is presented.

I. INTRODUCTION

Cellular Neural Networks represent a powerful approach to parallel, nonlinear signal

processing, that can be exploited for accomplishing various types of computational tasks. The

simple architecture, with local connectivity, and the analog nature of computation make it

feasible the VLSI realization of large networks. The basic model introduced by Chua and Yang

[1,2] is characterized by linear interactions among the different cells. The interactions are

represented by a space-invariant and time-invariant feedback operator, therefore called "cloning

template". Several generalizations of this basic model have been described in the recent

literature. In [3] CNN's with nonlinear and delay-type template elements have been

introduced. In [4] an adaptive cloning template is used to perform a signal processing task. In

the present paper, the space-invariant property is removed. The resulting CNN, named space-

varying in the following, is characterized by nearest-neighbor interconnections represented by

a cell-dependent connectivity matrix Aij. This assumption, which is a reasonable one for

biological neural networks, leads to an extra complication in the VLSI realization. However,

the space-varying condition extends the applicability of CNN's to a wide variety of problems.

In this paper space-varying CNN's are used zo design a cellular associative memory. In an

associative (or content-addressable) memory (AM) the information is retrieved from a

corrupted or incomplete version of it used as a key. Associative memories can be realized by

0-7803-0875-1/92 3$.00 019921EEE



using dynamical neural networks [5]. A stored pattern corresponds to an equilibrium state of

the network: the dynamic behaviour, starting from states sufficiently close (in the Hamming

sense) to the equilibrium point, will converge to it, giving an error correction capability.

Several design examples have been reported that make use of full-connection neural networks

(see [61 for a survey). The design of CNN's to function as associative memories has been

addressed in a previous work [7]. However, the approach followed in [7] is based on the
classical Hebb rule. It is well-known that a full-connection Hebbian associative memory has a
very low capacity, unless the patterns to be stored are mutually orthogonal. Since it is

reasonable that the memory capacity decreases as the number of interconnections decreases, a

different design method must be found. In the following, the learning algorithm proposed by
Zou et al. [8] is applied to compute the connectivity matrices Aij, i =1 ... M, j =1 ... Nof an

MxN CNN used as associative memory. The details of the model and of the learning algorithm

are described below.

II. CNN MODEL

With reference to [1], the normalized CNN equations are

dvxij v.= A vdt VxjA*Y I = .. M, j =1...N(1

where vx ij represents the state variable of cell C(i, j). The compact notation AU*vy represents

a spatial convolution and is defined as follows:

Au *vy = Aij.klVykl (2)

C(Ic. D e) (ij)

A U is the feedback operator, C(k,l) denotes the cell on the kth row and Ith column, in a
rectangular array. Nr(ij) represents the r-neighborhood of cell C(ij); a value r =1 will be

assumed throughout the paper. vyij is the output variable. Note that the control operator B and

the threshold I are not used. The input-output transfer characteristic of a cell

is:vyij =0.5]v xij + lI-Ivxi j-1l)

The symmetry assumption is made:

A ij, kl =A kl, ij (3)

for every i, j, k, and 1.
Condition (3) guarantees the complete stability, as shown in [1]. It is well known that, ifA
> 1, the only observable d.c. solutions correspond to binary outputs, i.e. vi ---+1 or -1, for



all i and j, as t - * Moreover, it can be shown [8] that an asymptotically stable, bipolar

solution vyij C (-1, +1), i M1,..., , j =1,..., N, exists iff it is

AU *Vy - 1 > 0 if vyij = +1 (4a)

- Au*vy -1_Ž0 ifvyij=-1 (4b)

for i =1,..., M, j =1,..., N.

Conditions (4) are necebbary and sufficient. So they can be used either to check if a bipolar

vector is a network solution or to determine the network parameters in order to have a desired

solution. In the following, they will be used as a design tool.

HI. ASSOCIATIVE MEMORY DESIGN USING LINEAR RELAXATION

The design of an associative memory based on a space-varying CNN consists in the

determination of the connectivity matrices Aij e R3 '3, i =1,.... M, j =1,..., N, so as to satisfy

the following requirements:

(i) System (1) will have no periodic or chaotic solutions.

(ii) A desired set of matrices vy = (-1, +1 )MxN, k=l,..., P, correspond to as many

asymptotically stable states of the network.

The symmetry condition guarantees point (i). Point (ii) is satisfied by imposing the constraints

(3) for the desired P patterns, assuming they are consistent. This leads to a set of linear

constraints that can be solved by several efficient methods, such as numerical relaxation or

linear programming. The method we followed is based on the linear relaxation algorithm [8].

Taking into account the symmetry property, a link between two adjacent cells is characterized

by only one strenght value. Assuming the self-connection Aii.ij is chosen a priori, the number

of different parameters to be computed is easily determined: it is L = (N-I) M + (M-l) N+ 2

(N-1) (M-1). Hence, PxMxN simultaneous linear constraints must be satisfied in order to

obtain the L unknowns. Let S be the solution space.

Let us introduce the following formalism:

A0 is the common self-feedback value (the only restriction is A0 > 1);

X=[ A11,12 A11.21 Alla2 ..... . . . . ]e RL is the vector of unknowns;

Xij r R8 , i =1,...,M, j =1,..., N, is a subvector containing only the unknowns relative to the

cell C(ij):

Xij = [Aij; i-l,j-1 Aij; i-l,j Au; i-,1j+ i Aij; Lkl A iLj+Aij; i+l,j-i Aij; i+1,j Aij; i+l,j+l IT



Y.i(k) r 1- 1,+1 )8, i =1,...,M, j =1 ,..., N, k =1,.... P, is a vector containing only the output
variables relative to the cell C(ij) and to the kth pattern to be stored, except for the term vy ij-:

Yi(k) = [ V Vi-.j VyOOi.j+ Vy VOi.jl Vy. i. j+1 Vyi+lvj_ Vyi+,j y i+lj+l ]T

The learning algorithm is as follows:

Step 0. Choose X r RL arbitrarily.

Step 1. Fork =1 to P

Fori =1 toM

Forj =1 to N
if (Vy ij =1) and (XijT Yij(k) +Ao -1< 0)

then
XyT y(k) + A

Xij = Xij - 2  Yi 1U

else
if (Vy ij ="1) and (- Xi7 Yi?~) + A0 -1 < 0)

then
Xij = Xij - 2 x~jijT •- Ao+ 1 yo

Step 2. if X e S then stop

else goto Step 1.

IV. SIMULATION RESULTS

In Fig. 1 a simulation example is shown. The rightmost images represent the six patterns to be
stored in the memory realized by a 6x6 CNN. The self-feedback is A0 =2. All the unknowns

are initially equal to 2. The algorithm described above was utilized to compute the L= 110

different connection values. The algorithm converged after 105 iterations. At this point the
network dynamics was simulated by numerical integration of Eqns. (1). The leftmost images
in Fig. 1 represent corrupted versions of the stored images (on the right). Using these noisy
images as initial states, the desired output image is obtained as the final state of the network.
Even if the considered example is characterized by modest dimensions (36 cells), the

simulation results are very encouraging. In fact, the ratio of the number of stored patterns with
respect to the number of cells, equal to 0.167, and the ratio of the number of stored patterns

4. . •L " . . . . . . . . . . . . . . . . . . . .



with respect to the number of interconnections, equal to 0.027, are quite satisfactory if

compared to those obtained using full-connected neural networks. Note that the present

method guarantees that the given set of patterns are all stable states of the CNN, if S is

nonempty.
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Fig. 1. Simulation example. The noisy kn~ages on the left are used as initial states of

a 6x6 CNN. The corresponding final states, on the right, coincide with the images

stored in the cellular associative memory.
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Abstract

In this paper we study possibilities of existence of oscillatory behavior in a simple closed
loop linear interconnections of cells. We established analytical sufficient conditions for
existence of oscillations in a ring of any number of interconnected cells. Simulation expe-
riments show very good agreement with analytical predictions. Qv-illations have been also
confirmed in the cases of more complex interconnections of cells and in particular in the
case of self-feedback existing in all cells.

1. Introduction

Dynamic behaviour of cellular neural networks is fairly well understood in cases of
symmetric interconnections [6]. However it has been pointed out by many authors that
even simplest neural structures can exhibit complex dynamics, typical for nonlinear sy-
stems, such as oscillations, fractal basins of attraction or chaotic behaviour [1-4], [7-8].
Even the simplest two- and three-cell interconnections are prone to exhibit oscillatory and
chaotic behavior and a variety of bifurcation phenomena [8-9].

In this paper we study the possibilities of oscillatory behavior in simple cellular neural
networks and in particular in closed loop interconnections of cells. Several simulation expe-
riments and also laboratory tests have been carried out confirming the existence of oscil-
latory solutions in this kind of structures with nonsymmetric templates or non-uniform
interconnections (ie. interconnection templates are not identical for all cells). It is possible
to show using rigorous mathematical reasoning that an interconnection of at least three
cells is likely to become oscillatory if the interconnection weights (or the cell gains) arc
approprietly adjusted. In particular it is possible to show that asymmetric templates with
no self-feedback give rise to oscillations when applied in a ring structure of the network.
Influence of the self-feedback is also studied in simulation experiments. Presented results
constitute a contribution to qualitative analysis of nonsymmetric cellular neural netw(- ks
and allow deeper insight into networks dynamics.
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Figure 1. Considered interconnection of cells.

2. Oscillation criteria for closed-loop interconnection of cells

We assume that the dynamics of the i-th cell can be described by a first order diffe-
rential equation of the form:

dt~ = [ •jTijfj[ttj(t) -] u i j ()

where: ui(t) represents the voltage across the i-th storage capacitor, Tij represent the in-
terconnection weights (influece of neighboring cells), fj- a saturation-type, monotonically
increasing, continuous function.
Let us assume that the cells are interconnected in a one-dimensional array (Fig.1).

This imposes a constraint on connectivity matrix T = [Tij]. The equations (1) become
(i = 2,...N):

dui(t) = 1-[TNYN(t) Ut+ 1 (2)

dti Z N! R,
du,(t) 1 ui(t)+ idu(t)= 1[Ty(t) - -- + Id (3)dt UiR-

These equations can be rewritten in the form:

du, (t)
dt

=Lu Fi Cu,_,,Ili) (5)
dt

These equations describe dynamic behavior of a particular type of cellular neural network
- namely the A templates are row-vectors with 0 self-feedback (central element) and only
one non-zero element (thus are nonsymmetrical).
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The results presented in this study are based on an interesting existing result [5]:

THEOREM 1.

Let functions F, satisfy
F,(0, 0) > 0, i = 1, ...N and Fl(UN, 0) > 0 for all UN > 0
and the following inequalities hold on a closed subset ]P E Rn:

-8F <0 and 8F. >0for2<i<Nand OF, <0.
aui ui--I 8 UN

The system (5) has a unique steady state u* = [ut, ... , u*T]T in the set P, with Fl(UN, uI) <

0 if UN > u• and ul > u•, while FI(UN, u) > 0 if UN < uý and ul < ut. Also, 5 is
bounded above in 5P. Let J = F,(u*) - the Jacobian matrix of F at u*. Suppose that J
has no repeated eigenvalues.
Then:
if J has any eigenvalues with positive real parts, the equation (5) has a nonconstant
periodic solution in the set P.

COROLLARY 1.

If for N > 3 all the weights Tij are zero except T1N, ...Ti-1, i = 2, ...N and exactly
one element among the nonzero ones is negative while all others are positive furthermore
T_•K + I, = 0 and T"-._, + I, = 0 for i = 2, ...N, then if the Jacobian matrix satisfies
the condition as in Theorem 1 and the closed loop of neural cells possesses a nontrivial
periodic solution.

COROLLARY 2.

Assuming that all cells have identical nonlinear saturation-type characteristics with go -
gain at the origin the condition imposed on the eigenvalues of the Jacobian matrix can
be replaced by:

2 < go (6)
(--T1NT 2 1...TNN-1) .. cos(-)<

and in particular when go = 1 as in the case of typical CNN cells:

2 2< 1 (7)
(-T1NT21...TN.N-1) *'cos( )

3. Experimental results

Extensive simulation and laboratory experiments have been carried out to investigate
the dynamic behaviors in ring structures of cellular neural networks. In our experiments
we used a modification of the op-amp cell model proposed by Chua and Yang [10]. Below
we present some comparative results obtained in interconnections of 3, 6 and 9 neural
cells. The time constant of the cells used was fixed CR = 10- 6 S. Waveforms preceding
the onset of oscillations and those showing how the oscillations are generated in the system
are shown in Fig.2-4. It is interesting to notice that the greater the number of neurons
in the ring the smaller is the weight value by which the oscillations are generated in
the system. The frequency of oscillations diminishes with growing length of the ring and
the amplitude of the state variables (the capacitor voltages) depend on the weight value
(template coefficient) and is bounded as given by the formula (3) of [10] - the greater the
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weight value the greater the amplitude of the voltages. This observation might be crutial
in the design as the upper bound of this amplitude is imposed by the dynamic range and
voltage swing of the actual amplifier used.

In further experiments we tested the system behavior in the case when the self-feedback
coefficients were non-zero. Introduction of a small self-feedback caused the frequency
of oscillations diminish and the amplitude grow in comparison with the ring without
self-feedbacks. The formula (3) of [10] for the amplitude bounds still holds.

In several experiments we observed that introduction of self-feedback caused the ne-
twork oscillate even in the case where without the self-feedback the system was allways
going towards an equilibrium point.

All experiments show substantial influence of the particular circuit implementation
used on the performance of the system. Depending on the actual active elements used the
amplitude of oscillation changes and distortion of the signal (clipping) is observed.

Further studies are concentrated on dynamic behaviors of different kinds of regular in-
terconnections of neural cells and bifurcation mechanisms in large cellular neural networks.

4. Conclusions

" It follows from Corollary 2. that it is always possible to adjust the weights of cell
interconnections (template coefficients) to obtain oscillations in the closed loop of
three or more cells. It is possible to ensure oscillatory behavior in a ring of odd
number of identical cells. In the case of even number of cells at least one of the cells
must have a different template (sign of the weight).

" Similar result could be obtained provided the gains of the nonlinear characteristics
could be adjusted.

" It is interesting to note that the assumption about the fixed gain in basic CNN
definition is very important as two systems with exactly the same topology and
connection matrices can have different dynamic behaviours depending only on the
gain factors.

"* Experiments fully confirm the theoretical reasoning given above. Morover several
other types of oscillatory behavior have been confirmed. These include parasitic
oscillations in certain realisations of neural cells.

" Possibilities of existence of oscillatory solutions in simple CNN structures (as consi-
dered above) may confirm the difficulties in design of CNN with templates having
coefficients of both positive and negative signs.

" The circuits discussed in this paper are relatively simple however one should consider
that similar effects are even more likely to occur in two- or three- dimensional
interconnection structures. The undesirable effects of phase shifts as could be seen
from our simple examples are likely to occure in the case of opposite sign templates
and may lead to complex collective behaviour of the network including sustained
oscillations or so-called ringing transients.
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* Analysis of CNN from the point of view of nonlinear dynamics and nonlinear oscilla-
tions in particular should prove useful in solving important theoretical and practical
problems and may lead to new areas of applications.
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Abstract - A generalizdtion of the Cellular Neurial Network paradigm Js
obtained by removing the uniformity constraint on weight values. Such
Generalized C0&s are capable of new tasks, such as function cpproximation
or associative memory. A stability analysis of these networks i, ,resented.
Adaptation and application of a gradient descent learninc algorithm is then
discussed.

Introduction - The most important characteristic of Cellular Neural

Networks (CNN) as defined by Chua & Yang [CHU88] is locality of

connections, that greatly simplifies the layout problem for IC realization.

The said model, however, involves another significant constraint in

the uniformity of weight values, so that processing, consists of a spatial

convolution with an operator defined by the cloning template. In this way,

and also with the extension to non-linear and delay-type templates [(RS90],

many image processing problems have been successfully solved [CNNA90],

always usirn the network with strong enough self-feedback as to obtain

saturated (i.e. ±1) steady-state outputs.

If the constraint on uniformity of weights is removed, new

applications may be conceived for CNNs, such as Content-Addressable Memory

(CAM) [TAN90], classification, function approximation, that cannot be

implemented by traditional CNNs.

I shall call Generalized CNN (GCNN) a network which is identical to

Chua & Yang's [CHU88] when parameters A(i,j;kl), B(i,j;k,l), I(ij) are

allowed to vary arbitrarily while respecting the locality condition. GCNNs

are included in the extended definition of CNN recently given by Roska

[R•S921. In the following, normalization R = 1, C = 1 is applied, and
x

B(i,j:k,l) - 6,, without loss of generality. Voltages v . v , v in

[CHU88] will be denoted x, y, u in the following. I shall always consider

networks with clamped inputs and neglect specifying that sums over cell

indices must be taken inside the significant neighborhood.

0-7803-0875-1/92 $3.00 ©i19921EEE
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Therefore, GCNN neuron dynamics is written as follows:

x. (t) = -x%. (t) + 41 A(ij;k.l)f(xkL(t)) + I(3.j) + U'. (1)

Due to the peculiarities of the model, development of CNN theory has

followed methods that are quite different from those usually applied in

Neural Network (NN) theory and sometimes are more similar to Digital Signal

Processing methodologies. This is most evident concerning one of the most

important topics of NN theory: learning.

In this paper I shall discuss stability of GCNNs, based on known

results of CNN and NN theory. On this basis I discuss possible applications

of the paradigm. The learning issue is later confronted, by considering the

possibility of application of standard. NN algorithms. es-j'cially a gradient

descent method.

Stability - It is possible to apply to GCNNs many known results from

CNN and NN theory.

Theorem 1 (bound on state values): If V ij Ix.(0) 1 < 1, IuLL <- 1 and

II I < I, then Pl- states are bounded for all time t > 0 and the bound1.J

x is computed as follows:
xMn - 2 + I + max 4,, IA(ij;k.l)1

Proof: It is theorem 1 of (CHU883.

Theorem 2 (stability of reciproal nets): If V ij,k,l A(i,j;kl) -

= A(k.l;i,j), then the network is globally asymptotically stable.

Proof: Follows immediately from theorems 2,3 and 4 of [CHU88].

Theorem 3 (saturated steady-state output): If V ij A(i,j;i,j) > 1 then

magnitude of stable states must be grater than 1.

Proof: It is theorem 5 of (CHU88].

Theorem 4 (stability of low-level-feedback nets): If V ij

AMi.j;i,j) + 1/2 [kL (IA(i.j;k,l)l+IA(k.1;i,.j)l) < 1

(where A(ij;ij) may also take negative values) then the network is

globally asymptotically stable.

Proof: Follows immediately from theorem 3 of [HIR89].

Theorem 5 (stability of p'sitive-cell-linking networks): If V i,j,k,l

A(i,j;k,l) > 0 and V i,j,k,1 there is a path on the network graph from i.j

to kl passing only through positive weights, then the network is

almost everywhere asymptotically stable.

1 In.. .. ---



Proof: Follows from theorem 1 of [CHU90].

Theorem 6 (stability of feed-forward processing CGTVNs): If a GCNN can be

decomposed into a cascade of globally asymptotically stable GCNNs. it is

also globally asymptotically stable.

Proof: It is a corollary of theorem 5 of [HIR89].

Applications - Leaving away consideration of networks having periodic or

chaotic attractors [BAR92], two modes of operation are interesting for

neural computing: the first case is when, for every clamped input, the net

is globally convergent [HIR891 regardless of initial conditions. In this

case the net performs a classification of inputs when it has saturated

final states, or otherwise it implements a continuous mapping from inputs

to continuous-valued outputs. It need not be reset and can be cascaded by

transferring the output of a stage to the input of the following one.

In the second mode inputs are clamped to a fixed value and the net has

multiple attraction basins (it is convergent), depending on initial

conditions. In this case classification or mapping is done between initial

conditions and final outputs. This way of functioning is typical of

Content-Addressable Memories (CAM).

In this paper I restrict consideration to networks operating in the

first mode.

A task for such a network may be described in general by a function
Y: 9 + g0 where input space 9 and output space 0 may be continuous or

discrete. For instance, in a classification problem 9 S (Rr' and 0 c ZM for

suitable n and m. For this reason. I shall discuss learning problems as

applied to function approximation tasks for boolean and continuous mappings.

Learning - All the work that is currently being done on CNN learning has

been based on the fact that, unlike all other NN models, CNNs have very few

parameters [HAR91] (SZO91]. This is aot the case for GCNNs, and for this

reason it is necessary to exploit classical learning algorithms from NN

theory. The only example in literature may be found in [TAN90]. where the

Hebb rule was used for CAM purposes. Other possibilities include stochastic

methods. such as simulated annealing, or gradient descent algorithms. In

this paper I discuss application and modification of a gradient descent

algorithm: Recurrent Back-Propagation (RBP) [PIN871. which is a
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generalization of the well known Back-Propagation to non-feed-forward

networks.

Recurrent Back-Propagation - Consider GCNNdynamics (1). A sigmoidal output

function f(x) = 2(1+exp(-/Rx))-1 was chosen, because the usual piecewise

linear output function, having zero derivative outside the interval (-1,1),

would give more problems of local minima during learning.

Denote y1 the desired steady state output matrix with input matrix up.

In the general case, u and y take significant values over some units only

(input and output neurons). Choose error measure E as follows:

E =l/ E r.j j ;ei. = a~ [Y" .-fO .)P])

where x" is the stable state with input uP, c*. is 1 for output neurons
1. j

and 0 for neurons whose state is hidden to the external environment.

Gradient descent over error surface E yields the usual delta rule,

which may be written as:

A+x(p,q;r,s) = Ak(pq;rs) + AAk(pq;r,s); IkCi j) M Ik(i,j) + AIk (i,j)

AA(pq;r,s) -- - OA(p,q;r,s) -E t ); AI(i,i) = • E• f(
OA(,qPp rs ,.i1.

where t = [ ") ] and Z' is the fixed point of the error

back-propagation GCNN with dynamical equation

This net has the same topology as the original one, with transposed

weight tensor, a linear output function, and errors E. as biases.I j
System (2) has the same fixed points as (1), with the same eigenvalues

[HE91]. However, convergence of the back-propagation network is not

guaranteed by stability of fixed points of (1). because the output function

is linear. For this reason, I added a piecewise linear output function

g(x) - 0.5(Ix+K1-1x-KI); in this way we obtain the same back-propagation

system while in the linear region, i.e. in a neighborhood of the solution

(that can be made large for large enough K), but the network, whose

dynamical equations are therefore written as

z~ i--2. + 4,A(k,1; i, j)g(z" ) + £(2')
'.3 % 3 k1

1 Id. '.

is now stable whenever the original one is.
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When learning_ is accomplished on a sequential computer. RBP is rather

-low, because it needs thousands of steps involving each the relaxation of

two networks. However, this algorithm was chosen because of the success of

ordinary back propagation in feed-forward nets. Thinking_ of real-life

realizations, RBP may be implemented in hardware so that one iteration step

of the algorithm lasts only a few time constants of the electronic circuit,

so that learning time is actually governed only by the frequency of

presentation of patterns.

Simulation results - Boolean and continuous function approximation was

tried on i-neighborhood planar networks (type 1. figure 1) and on layered

systems of one-dimensional networks (i.e. planar networks with selected

connections - type 2. fig. 2).

Learning was started with random weights satisfying theorem 4 so as to

ensure stability, which was generally preserved during learning, provided

that the learning rate was not too large, even if weights eventually

violated the condition.

Type 1 nets were soon discarded, because they tend to oscillate very

easily and therefore have very long settling times (hundreds of

time-constants).

Type 2 networks, instead, proved capable of approximating boolean and

continuous functions. A 2x2 network was taught to compute logical AND and

XOR of its inputs (fig. 3); 3x3 nets with both topologies of fig. 2(a) and

(b) were able to approximate sections of sinusoids.
Conclusions and perspectives - The results reported in this work are enough

to say that new applications may open up for Cellular Neural Networks. in

the fields of approximation, reconstruction of signals, classification.

More extensive simulation is in progress in order to inquire into the

performance of such networks when confronted with traditional fully

connected networks.

figure 1 - ." *.-
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figure 3 XOR/AND network: weights are written near connections and cells;

biases I are in brackets.
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Abstract.

A possibility of designing functional devices for various applications

in terms of unified technology on the basis of CNNs is discussed on

examples of an associative memory device, complex oscillations generator,

devices for chaotic memory scanning and pattern recognition.

1. INTRODUCTION.

One of the advantages of analog (CNN)cellular neural networks [1] is a

possibility of their realization as chips.

But CNNs with relatively small number of elements may also be promising.

Even if all the elements are coupled with each other, the total number of

connections is not excessive here.

Then an interesting possibility to design chips of integral functional

devices for various applications in terms of unified technology on the

basis of CNNs with inhomogeneous couplings, appears.

For example, a possibiliti to use neural networks as A/D converter and

circuits for solving linear programming problems were discussed in [2].

This approach can also be used for designing various classifiers [3].

We will discuss in this report an application of this approach to the

design of devices for chaotic memory scanning and pattern recognition.
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2. ASSOCIATIVE MEMORY, CHAOTIC SCANNING AND PACEMAKER.

iwo devices are necessary to organize chaotic memory scanning: a memory

[4] itself and some external generator or pacemaker to push the system from

one memorized pattern to another.

2.1. Associative memory on the basis of an inhomogeneous CNN.

To store images into a neural network, we have to find an algorithm of

forming the matrix of couplings or templates, providing correspondence

between equilibrium states of a CNN circuit and memorized patterns.

ADALINE algorithm [5] was chosen as a learning rule (an algorithm of

coupling matrix forming). This algorithm was chosen for the next reasons:

it is simple in realization and its matrix of couplings is not symmetric.

In general, the matrix of couplings is noL local.But demands on the

locality of the matrix of couplings can be lowered for the case of a little

number of cells and images. This case of a little number of cells and pat-

terns is important not only as an example, but for classifier design also.

2.2. Generator of complex oscillations with amplitude modulation.

The dynamics of a non-autonomous harmonically driven CNN composed of two

cells was studied in details in [6]. A chaotic attractor was found in this

non-autonomous system.

Such complex dynamics can obviously be obtained in an autonomous system,

replacing an external harmonic signal by the signal from a generator

composed of two cells. The dynamics of the four cell-CNN is described by:

dY/dt + Y = T * F(Y),

Y = ( y(l), y(2), y(3), y(4) }
F(Y) = { f(y(1)), f(y2)), f(y(3)), f(y(3)) } I

f(x) = (:x + 11 - Ix - 11) / 2

To design a pacemaker that could be used to control memory scanning a

neural generator in which a large amplitude chaotic oscillations are

interchanged by oscillations with a small amplitude near zero value, should

be constructed.

We modify then the system (1) to a neural network of Fig.l. Two
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additional controlling cells 5 and 6 are introduced here. The dynamics of

the cells 5 and 6 are described by equations

C(t).dx/dt + x = f(u),

a(t) = a + a .sin(27it/T) (2)

where u is an output signal from the cells 1 or 3 for the cells 5 or 6

respectively, T is a period of controlling signal for parameter a(t).

With an increase of the parameter a(t) chaotic oscillations disappear in

the system.

We can obtain the needed control signal (Fig.2) for the memory device

with the help of high-pass filter composed of neural cells.

Applying the signal from the pacemaker to the associative memory device

we obtain the device for chaotic scanning of memory. Fig.3 shows the regime

of memory scanning for CNN composed of nine cells with tree stored patterns

V1, V2 and V3.

It should be noted that chaotic memory scanning may also be organized in
some other way [7].

3. PATTERN RECOGNITION.

By pattern recognition we mean the following.Let an external signal is

applied to a neural system, in which chaotic scanning of memory is

organized. If the external signal corresponds to one of the patterns,

stored in the neural network (memory device),the system must stabilize

itself in the state, associated with that pattern. Otherwise, it should

continue chaotic memory scanning.

For the organization of pattern recognition we introduce a local feed-

back between the memory and pacemaker. This feedback turns on and destroys

the complex oscillations of the pacemaker only if a given equilibrium state

of the memory device corresponds to the pattern being recognized.

The feedback can be described by the relation

a(IY - ZI) = k/(IY - Zl + e ), (3)

where k and c are some fixed parameters and e << 1; vector Z stands for an

external signal or external pattern; vector Y describes an internal state

of associative memory; I * is a vector norm. a(lY - ZI) is added to a(t)

(section 2.2).



We organize pattern recognition only on one component of Z.

a(1Y - ZI) = k/(jy(2) - z(2)1 + c ), (4)

where y(2) is the second component of Y, z(2) is the second component of Z.

Fig.4 shows the trajectory of the state variable y(2) for a pattern

recognition regime.

4. CONCLUSION.

So we discussed the possibility of applying CNNs and their combinations

to the design of various functional devices. This approach was discussed on

the examples of associative memory, complex oscillation generator, chaotic

memory scanning and pattern recognition. The advantage of this approach is

in the use of universal CNN chips for different purposes.
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Fig.1 The four-cell CNN with two control cells 5 and 6. Couplings

between cells are T = T = 2.0, T = T = 1.2, T = T = 1,11 22 33 44 15 36

T = -T =1.2, T = -T = 2.1, T = 3.5.52 21 64 43 31

Y

0.7

-*0.7

-al * I

0.0 2•,0 NO.0t

Fig.2. Control signal for the "memory" device.
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Fig.3. Chaotic memory scanning. Memory device falls onto memorized

pattern V1 for 0 < t < 45, 200 < t < 270, 310 < t < 360;

onto V2 for 90 < t < 190, 280 < t < 300;

onto V3 for 45 < t < 90, 360 < t < 400.
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Fig.4. Pattern recognition: k = 0.02, e = 0.002. Z is an arbitrary

external pattern for 0 < t < 140 and Z = VI for t > 140.
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Abstract
This paper covers the design o0 continuous-time (CT) and discrete-time (DT) Cellular Neural Net-
works (CNN) using analog VLSI circuit techniques. A new cell model is proposed which exhibits
advantages for reduced area and power consumption CNN implementations. This model is very
well suited for implementation in current domain, which is also important to avoid the need for cur-
rent-to-voltage dedicated interfaces in image processing tasks with photosensor devices. Cell
design relies on exploitation of current mirrors for the efficient implementation of both linear and
nonlinear analog operators. These cells are simpler and easier to design than those found in previ-
ously reported CT and DT-CNN devices. Basic design issues are covered, together with discus-
sions on the influence of non-idealities and advanced circuit design issues as well as design for
manufacturability considerations associated with statistical analysis.

Introduction

Cellular Neural Networks (CNN) consist of arrays of elementary processing units (cells), each one
connected only to a set of adjacent cells (neighbors). This local connection property makes CNN
physical design easy (specially for the class of translationally invariant CNNs, where all inner
cells are identical), allowing increased cell density per silicon area. Also, programmability issues
can be easily incorporated to translationally invariant CNNs without significant extra routing cost,
by just adding several global control lines, one per weight.
CNN properties, and its application to image processing, pattern recognition, motion detection,
etc., have been covered in different papers, for instance [Chua88a, 88b, 90, 91 a, Noss92, Mats90a,
90b, 90c, Mats9l]. This paper focuses on CNN VLSI implementation, of which little literature is
available [Cruz9l, Halo92, Harr92]. For implementation purposes, analog CNNs can be classified
into continuous-time (CT) [Chua88bl and discrete-time (DT) [Rodr9O, Harr92] models. Each

model type is described by a set of nonlinear dynamic equations, one per cell, whose associated
equilibrium state distribution determines the network computational properties. Previously
reported CT-CNN IC design approaches focused on the use of gm1 -C techniques for the implemen-
tation of the Chua-Yang's CNN cell circuit model [Chua88a]. Proposed discrete-time realizations
focused on a very similar cell circuit model, for which MOSFET-C techniques and fully differential
high-output impedance opamps have been considered [Harr92]. In all cases, input signals are volt-
ages, while internal signals can either be voltages or currents. Since primary output of image sensor
devices (phototransistors [Sayl9l]) is current, the need arises to convert these outputs to voltage,
thus complicating CNN interface design for image processing tasks. Also, electrical cell design is

0-7803-0875-1/92 3$.00 ©19921EEE
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not easy because different dynamic ranges for the internal voltages and currents must be considered
to guarantee a reduced influence of the MOS transistor nonlinearities. Finally, operation speed is
not optimum because the combination of internal voltage and current signals results in internal
high-impedance nodes, and hence, large time constants.
Here, a new CNN cell model is presented and implementation techniques are discussed for both
CT and DT CNNs using current-mode techniques. Cell complexity is shown to be much smaller
than for previous approaches. Also, design is very simple (only two sizing equation are needed)
and the speed/power figures are very good due to the lack of internal high-impedance nodes.

Chua-Yang's CNN Model:Analog Implementation.

Fig. l shows the Chua-Yang's CNN cell circuit model, whose dynamic is given by:

"T -x" (t) + D" + _ {Ay (t) + B~lu} VC e (1)
(It d E N, (c)

where N,.(c) represents the cell neighborhood, including cell c itself, G'D is the net grid domain, and
the cell outputs (yd) are obtained from the state variables, .'l, by the following nonlinear function,

1 dix ( I+ I-\I

y d(t) = (jx(t) + II -Ix(t) - l[) (2)

The input (Ba/) and output (Ad") weights are called control and feedback parameters, respectively,
and D` is the offset parameter. Computational properties of Chua-Yang's model rely on its ability
to yield, for A`C >1, two stable equilibrium points separated by an instability region, and in the pos-
sibility of modifying the stable point attraction regions by changing the neighbor contributions,

1 = DA'Y(t) +B BU +t ,Ud (3)
dE N, (c)

d~c

This is illustrated in Fig.2, showing the T(dx/dt) vs x" characteristic for the different qualitative
situations possible. The displayed dynamic routes show that the attraction region for the equilib-
rium point on the right becomes narrower for I decreasing; for 1=13, this point becomes virtual. A
similar situation happens for the equilibrium point on the left, in case I increases.
Analog VLSI implementation of (1) must handle different variation ranges for the state a,,.. the out-
put variables, as illustrated in Fig.2: while the output variables change inside [-1,1], state variable
excursions are constrained by the following normalized maximum value [Chua88a],

I= + ID'I + { a:1 + IB: 1 (4)
dIE N,(c)

which, for typical templates, ranges between 5 and 10. Thus, in the previously reported gn-C cir-
cuits ICruz9 1, Halo92I, where all resistive components in Fig. I are realized by differential input
transconductors, largely different biasing conditions and design equations must be considered for
the transconductors, thus complicating the sizing process and yielding non-optimum power con-
sumption and area figures.
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Extended Range CNN Models

A new CNN model which preserves qualitative properties of the Chua-Yang's model and yields
identical variation ranges for both state and output variables is proposed as follows,

"- = g [x (t) I + D" + {A:y' (t) + B,lu" } VC E D (5)
dt de N,(c)

where g(o) is a three pieces piecewise linear characteristics given by,

-m(xC+1) +l x c<-I

g (xW) = lir _ C otherwise (6)
-mi (xc-) - 1 r >1

Convergence towards binary states in the new model is illustrated in Fig.3. It is seen that dynamic
routes converge to binary states for all possible qualitatively different cases.
A similar full range model is found for discrete time CNNs,

yC + = 1+1 +A=y (n)+ BCu } 1 Vc E D (7)

d E N, (c) 
d

which involves only input and output variables. In this model, convergence towards binary output
requires thatfl.) be sigmoidal and that the equivalent slope at the origin, A,.':f' (0), be larger than 1
to ensure regenerative behavior. This can be achieved by using either a soft nonlinearity such as
that in (2) and A j>l, or by using a comparator;

1 for z>O
for z< 0

and AC '=l, as proposed in [Harr92]. Convergence towards binary outputs for the DT-CNN model

is illustrated in Fig.4.

Current-Mode CNNs Conceptual cells

Signal sunumation, scaled replication, integration, delay and nonlinear transformation are the ana-
log operators required to implement CNNs. Summations are performed in current-mode by routing
currents to a common node. Remaining operators are realized using a very simple analog building
block: the current mirror. A current mirror yields linear current scaling via a simple, yet ingenious,
concept involving nonlinearity cancellation between matched transconductors. Fig.5 shows cur-
rent-mirror based realizations for the different CNN model cells given above using a generic,
abstract three terminal transconductor (Fig.6) such that,

i2 = Pu (v,v 2) (9)

il << i

where u(W) is assumed invertible, at least in v', the characteristic is parameterized by a designer-
controlled scale factor P, and the device is assumed to enter a cut-offregion, with i2=--O, when input
voltage is below a cut-in value. Fig.5(a) applies for all models discussed in the paper. Switches
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labelled S, and S, are used for cell initialization purpose. Fig.5(b) is a schematic for the cell's
dynamic part in the Chua-Yang model. Corresponding schematics for the full range CT model is
shown in Fig.5(c). Switch R, in both schematics is used for initialization purposes. It is seen that

the full range model gives simpler circuits than the Chua-Yang model. Fig.5(d) shows the schemat-
ics of the cell's dynamic part for the DT CNN model.
In the simplest case, the generic transconductor contains only one transistor. Besides, only one
MOS transistor is required to implement an analog switch with zero ON offset and very low OFF
leakage (about lOpA). This infers that for this simplest case, DT CNN cells of Fig.5 are imple-
mented in CMOS using only 18 transistors: this is an important advantage when compared to pre-
vious approaches for DT CNNs [Harr92], where 106 transistors are required for a similar cell. For
CT Chua-Yang CNNs, complexity (measured in number of transistors) of the current-mode circuit
is similar to previous g1,-C implementations [Cruz9lj. However, this complexity decreases in cur-
rent mode implementations of the full range model (down to 18 transistors per cell). Despite the
actual model considered, the design equations for current mode CNN ICs are much simpler than
for previously reported techniques because of the intrinsic current rmirror nonlinearity cancellation.
Also, current mode CNNs are faster and allow larger pixel densities.

CMOS Current Mode CNN Design Issues

Current mode CNN operation is degraded by both random and systematic sources of error. Random
errors are due to statistical variations of the technological parameters across the die and can be
attenuated using large devices, careful layout, and proper bias generation and distribution. System-
atic errors are, on the other hand, corrected by proper transconductor choice and transistor sizing.
Two major systematic error sources can be identified: a) Input-output voltage mismatching at the
bias point, defined as the point where transconductors sink only their bias currents; b) Finite Ro/
Rj, ratios, where R,) represents the transconductor output resistance and Rim holds for the input
resistance (for an ideal mirror, Ro/Ri,, should be infinitely large).
Static Nonidealities and Sizing Equations: Voltage mismatching produces current offset, origi-
nated by the transconductor current dependence on the output terminal voltage. For the MOS
transcoductors in the paper, this offset is eliminated by forcing the same current density in the mir-
ror input transconductor and loading devices. Finite R0 /Rin ratio causes current gain error due to

spurious current division at the mirror input and output nodes. The error is especially significant if
small dimension single-transistor transconductors are used, due to the very low Early voltages
associated to short channel transistors. It can be corrected by increasing device size (channel
length) but this does not yield optimum area and speed for CNN implementations in scaled down

technologies. For improved R/Ri,, figures with short channel devices, either cascoded transcon-
ductors, or feedback transconductors, or a combination of both must be used [Greg86, Sack90.
Figs.7(a) and (b) show the two CMOS mirror structures considered for CNN design, including the
complementary devices used for biasing (dashed lines). We have chosen n-channel devices for the
transconductors since their K values are larger than those of the p-channel (K,,>K1,), yielding more
area-efficient CNNs. Design parameters are displayed in the figures: W, L11, L, and VcAs. Fig.7(c)
shows a circuit to provide this cascode voltage. We assumed that Early voltages are proportional
to the channel length: VA,,=ajL,m , V, 1,=cc11LP. In Fig.7(a) channel lengths are different for NMOS
(L,,) and PMOS (L,,), to obtain equal nominal Early voltages for both devices, and, hence, optimize
R0/Rj. In the case of Fig.7(b), this figure is intrinsically much larger and all channel lengths are
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made equal (Ln1=L1,) for simpler design. To achieve simplicity, we have also assumed that all tran-
sistors have the same channel width, W. Table I gives sizing equations for Figs.7(a) and (b). These
equations are intended to ensure that the mirrors handle the whole input current range with mini-
mum distortion, and using the smallest possible devices. The W expressions given in the table cor-
respond to a bias current IQ; W values for larger currents (associated either to output
transconductors where gain is larger than unity or to input transconductors with bias current SIQ)
are calculated taking into account the requirement for equal current density in all transconductors.

Table 1: Sizing Equations for CMOS Mirrors

Channel widths (W=W,,=Wp) Lengths Bias voltage

single 41 L "
device w = --( + 2 ,]

mirror VD-VsvT. LK, 42-aJ p=
p

cascode 161Q
mirror w .7,-.' L,, L, = L11 VCAS Vss T,,

Note that the sizing equations are parameterized by L,, which is chosen by the designer to control
RoIRin and the channel area. Fig.8 shows the current gain error per cell versus the total cell area for
a full range CT CCD CNN using single and cascode mirrors in n-well 1.6gtm CMOS: the top family
is for the single transistor mirror, and the bottom family for the cascode. Parameter is the rail cur-
rent IQ, which varies from 0.25J.A to 128gtA. As it can be seen, simple current mirror requires large
area to achieve acceptable error figure. On the other hand, cascode mirrors allow using short chan-
nel-length devices, and, thus result in much higher area efficiency.
Dynamic Nonidealities: It can be seen that the time constant of the CT models depends on the state
variable value; for instance, for the Chua-Yang model the following is obtained,

C (10)

3 (xC + SIQ)

Thus, transient is faster if the cell state is near the black pixel. However, the equilibrium points are
exactly the same as for the nominal case, corresponding to the solution of the equation,

h C C + 2 (fx" (t) + IQf - x" (t) -IQ ) +1 = 0 (11)

Also, the sign of the state variable derivative (equivalently, the sign of hf) for a given I has exactly
the same dependence on A- as for the nomninal case, and, as a consequence, actual dynamic routes
are identical to the nominal.
Another dynamic error arises in the analog switches due to the necessity to evacuate the MOS
channel charge during the switch turn-off transient process. This error, generically called
feedthrough error [Eich89], is very large (up to 20% and more) if small geometries transconductors
are used. A simple technique to attenuate this error is the inclusion of an additional capacitor at the
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switch output node. Since neither linearity nor accuracy in the capacitance is required for this pur-
pose, a shorted transistor can be used. This is feasible for standard digital CMOS technologies
(having only one poly layer) and require less area than typical capacitors in two poly technologies
(Poly 1 -SiO2-Poly2), since channel oxide is usually thinner than interpoly oxide. The use of this
technique can easily lower the error about one order of magnitude. Also, since only two of these
devices are required in each CNN cell, area penalization is not severe. Much lower feedthrough
error is achieved using a dummy transistor, and automatically tuning the delay between the switch-
ing device clock signal and the dummy device clock signal [Espe92]. In this manner errors as little
as 0.3% have been measured on silicon prototypes. Also, the extra monitoring and control circuitry
required for this automatic tuning can be shared for all cells in the network, so that area penalty is
not severe at the network level.
Bias Current Selection: A crucial issue that has not been discussed yet is the election of the bias
current IQ. The geometry factor (WIL) of the transistors in Figs.7(a) and (b) increases monotoni-
cally with IQ. Furthermore, static gain error due to finite RO/RiR values also increases with IQ. In
addition, power dissipation is proportional to the bias current. For these reasons, a bias current as
small as possible should be choosen. The issue is to identify the minimum feasible rail current
value. Lowest limit of the bias current is certainly established by leak-age (about 10pA in standard

CMOS). However, a more restrictive bound exists due to MOS transistor mismatch [Pelg89] and
Early voltage (VA) degradation with channel length. These phenomena, which actually limit the
minimum devices geometries, also restrict the minimum current.
Mismatch is mainly produced by variations of the threshold voltages (V-.) and large signal
transconductance (r3=.tCoxW/L) of equally designed transistors in the same chip. Standard devia-
tion G(V,) and ratio ay(p)/p can be expressed in terms of two statistically different contributions: a
white espectra component, that accounts for the effect of phenomena with extremely short corre-
lation distance (much less than minimum transistor dimensions), and a second component that
reflects the effect of large correlation distance phenomena. The first component is, in a good aprox-
imation, inversely proportional with the square root of the channel area, while the second is pro-
portional to the distance between two equally layed-out devices. Results in [Pelg89] demonstrate
that the distance dependent component is negligible for devices with a channel area less than about
I 00im2. For bias currents below about 50gA and cascode mirrors, design equations in Table 1 give
devices with channel area well below this bound. Hence, the distance dependent component need
inot to be considered for current mode CNNs, but only the a(V7) and G(Yf)/13 dependence with chan-
nel area.
In adition, for a given a(V-.) and a(1)/f, the ratio a(I)/I in MOS transistors is inversely proportional
to the gate-source voltage vgs. This means that, once WIL factors have been set to achieve accept-
able mismatch levels, current bias can not be decreased too far below the upper bound given by
equations in Table 1, since this would produce a low vg, voltage in the bias point, with the corre-
sponding high cy(!)/!. Hence, mismatch considerations establish bounds for both minimum area and
power trends. For example, we have obtained 100% success (out of 30 trials) for a Montecarlo sim-
ulation of a connected component detector (CCD) current mode full range CT CNN with 16 cells
in a row using unitary transistor geometries of W/L=4g.m/3.2g.um for both n and p-channel devices,
and a bias current /Q=21.tA. Further geometry reduction has not been considered, since minimum
contact size (4ptm with surrounding diffusion in the 1.6.tmn n-well technology used) does not allow
a significant area reduction anyway. Similar simulations performed on a Chua-Yang model coun-
terpart resulted in lower yield figures, which can be understood by observing that the normalized
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value dispersion of the equilibrium points (normalization factor is tile distance between noninal

equililibriul state positions) is much smaller for the full range niodel, than for tile Chua-Yang
model. Hence, larger geometries should be used for increased yield with this model.
Current references for every cell in the network and for every current source within each celi can
be gzenerated from common bias voltages. Reference dispersion due to mismatch among the tran-
sistors of different current sources did not produce critical results in Montecarlo simulations. Cas-
code voltage for current mirrors can also be globally distributed. If high noise levels are expected
at bias voltages, as may be the case in discrete time implementations, a bias voltage independent
current reference [Greg86], shown in Fig.9, can be included in each cell, although a strong area
penalization may result. Current reference dispersion will be produced only by local mobility and
resistivity variations. Montecarlo simulation of entire CCD systems where cell current references
have a standard deviation larger than 5% have shown 100% success (out of 15 trials).

Discussion of Results

Table 2 gives the transistor count and total cell area for different templates, and for both CT models.
Cascode mirrors with W=4.tm and L=3.2prm are used. For DT implementations area is slightly
larger than those for the full range CT model, due to the switches. Although data in Table 2 do not
include the area occupied by the initialization circuitry, pixel-densities ranging from 60 to more
than 160 cells/hm2 can be easily achieved (depending on the particular template) if the full range
model is used.

Table 2: Cell area and transistor count for different templates and CNN models.

Full Dynamic Chua-Yang Full Dynamic Chua-Yang
Range 2  Model Range Model

Area (pimn) Area (pim2) Ttor. Count Ttor. Count

C. C. Detec. 5916 12691 40 56

Shadow Detec. 7736 16533 52 68

Borders 15471 26291 112 128
Extrac.

Corners 16381 28212 120 136

Extrac.

Hole Filling 10921 24774 76 92

Noise Filtering 5460 14258 40 56

Several 1.6pnm CMOS prototypes have been designed to probe ideas in the paper: one is DT and
can be reconfigured via local logic for different templates, other two prototypes are CT and fixed
template (CCD and other for noise removal). Obtained results demonstrate the possibility to
achieve very large cell densities with good yield figures by using:

*Full range CNN models, allowing all cell variables to have the same variation ranges and,

hence, better area and power consumption figures.

*Intrinsic functional nonlinearity cancellation, giving technology independent circuits and
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architectures, and allowing the simplification of the IC design process.
*Cascode transistors, to reduce static error tenns without area and speed penalization.

*Careful consideration of electrical issues related to net architecture and input/ouput interfac-

ing.
For CMOS technology, current as low as 21A can be used with reasonable yield, if strong inversion

is used. Speed for these low current levels is optimum (about l !s for 16 cells CCD) due to the small
device dimensions and the low impedance of internal nodes. Electrical tunability can be easily
incorporated using electrically pararneterized transconductors, for instance, differential amplifiers.
Digital tunability is direct by switching lines rooted to common nodes. Delay templates are in this

way easily incorporated.
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Abstract

The design of a CMOS analogically programmable cellular neural network is reported. The
electrical characteristics of the basic building blocks are analysed and discussed.
Additionally, some performances of a lOxlO CNN are reported.

1 INTRODUCTION
In recent years a new and alternative approach to the classic neural network topologies,
called Cellular Neural Networks (CNN's), was introduced by Chua et al [1, 2]. CNNs
exhibit several interesting features and properties: each cell is locally connected only to its
neighbours; the processed signals are analog in nature; the circuit architecture is space
invariant and this renders the CNNs particularly suited for an implementation in a VLSI
technology, like CMOS;
Up to now, only a few proposals of practical CNN implementations have been published [3
- 5] and, as a matter of fact, the 8x8 connected-component detector (CCD) of [5] represents
the only CNN chip fabricated and tested so far.
In practice, the possibility to manage a neural network which can be used for different
applications in different time periods of the signal processing procedure is particularly
interesting, as one can use the same part of the chip to perform several circuit functions. In
this context, a CMOS approach for the design of a reconfigurable cellular network in which
the template coefficients can be digitally varied has been proposed in [4].
In this work we will present the design of an analog programmable CNN architecture with
low-power dissipation in a 1.5urn CMOS technology.
In particular, after discussing the design of basic building blocks, we will report the
electrical performances of a lOx10 CMOS CNN, constituted of about 8,000 MOS
transistors, fully simulated at the device level, which can Lt- mply analog-programmed by
varying an external control voltage. By so doing, the designed CNN can perform such
function as noise removal, hole filler, shadow detector, connected component recognition
and edge detector. The whole power consumption of the circuit is limited to about 60mW,
which is about 1/3 compared to the power consumption of the non programmable circuit
presented in [3].
A programmable CNN architecture can be used for several applications in image processing.
For example, hand-written character recognition is known to be very sensitive to
preprocessing, which differs for constrained and unconstrained writing, moreover, for the
single classifiers on cooperating recognition systems. A programmable CNN architecture
used for the normalization stage of the classifier allows to apply the same hardware to the
above cases. The image size is usually 32x32 or less and requires the processing of
200+2000 characters per second, making the CNN architecture a very good candidate for
this purpose.
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2 DESIGN OF THE CMOS BASIC BUILDING BLOCKS FOR THE
CNN
The processing unit (N-shaped resistor) was achieved by feedback connecting an inverting
transconductance CMOS operational amplifier. The schematic diagram of the circuit is
shown in Fig. 1, while Fig. 2 reports the simulated I(V) characteristics of the designed
circuit. As it can be seen, the current and voltage values corresponding to the two knee
points in the curve are symmetric and their value are luA and 0.6V, respectively.
The linear voltage-dependent current sources required to realize the coefficients for template
B were realized with the simple OTA circuit shown in Fig. 3, which has the inverting input
always connected to ground. Fig. 4 reports the simulated characteristic of the circuit for a
design chosen to give a weight of 2. For a ±5V bias voltage the two above circuits have a
power consumption of about 7 5uW and 55uW, respectively.
The circuit used for analog programming the coefficients for feedback template A is shown
in Fig. 5 and was developed with the aim of reducing at most the number of control lines,
the number of MOS devices, the active gate area and the power consumption. It is
constituted by a 6 transistor multiplier cell, a current mirror M1-M2 which establishes the
current of the main circuit, a simple output mirror M9, M14 and a double output current
mirror M10-M13.
In particular, the drain current Id2 of device M2 is selectively diverted trough M3 or M4
depending on the difference between the input control voltage Vc and the reference voltage
Vbias. The partition of Id2 trough M3 and M4 constitutes the programming action of the
control voltage Vc. The circuit enables to get for the lateral coefficients of the template A
values which can be continuously varied from 8 down to -8.
Fig. 6a shows a typical behaviour of the saturation output current los as a function of Vc,
while Fig. 6b shows the output current Io as a function of the state voltage Vx of the cell,
for several values of A ranging from -0.25 to -8.

3 APPLICATIONS
By using the building blocks previously described we designed several l0xl0 CNNs with
the aim of validating the design of the programmable A generator. The parasitics effects
associated to overlap capacitances and junction capacitances, which vary by changing
transistor dimensions and bias voltages, were accurately taken into account. The resulting
circuits have a complexity of the order of 8000 transistors and were completely simulated at
the device level by using the circuit analysis program Spice. The state capacitor was lpF.

3.1 CNN Low Pass Filter for Noise Removal
In this application (LP-CNN) the image was continuously applied to the input and
applied as initial condition to the state capacitors. The feedforward template B and the
"first choice" for the feedback template A were the same of Ref. [3].
The designed LP-CNN was tested by processing several input images with both different
voltage levels corresponding to the black and white colours and different superimposed
gaussian noise. For black and white levels shrinked together down to 60% of the
dynamic range and a gaussian noise with a standard deviations not higher than 0.225 the
designed LP-CNN perfectly removes the input noise. Conversely, when the dynamic
range of the input signal was made smaller (40% of the dynamic range) and the standard
deviation of the noise was increased (s = 0.75) the LP-CNN shows errors in noise.
removal.
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For an image with s = 0.75 an example is shown in Fig. 7, where the output image found
by the LP-CNN after noise removal (b) and the correct image (a) are reported. There are
7 pixels containing an error in the output image (a similar result was achieved in [3]).
The time required from the LP-CNN to reach the equilibrium state is less than 2usec.
Due to the programmability of the Aij coefficients, several other analyses were
performed by continuously varying the value of the "lateral" weights in the A matrix
(which were 1 in the original case) from 1.5 down to 0. We found that by increasing Aij
the final values of the state voltage slightly change, but the number of errors Ne in the
output image does not change. Conversely, when the values of the lateral Aij's decrease
gradually from 1.0 down to 0.25, we found more pronounced variations in the final
values of the state output voltages and also a sensible decrease in the number of errors.
The above small sensitivity of the output image to variations in the values of the lateral
Aij weights seems indicate that: a) the "preprocessing" filtering action given by the
template B, which is permanently applied on the input image, is very strong and, b), the
template A seems just to establish the transient behaviour toward well defined final state
voltages.
These observations were further validated from the results achieved by programming the
Aij's equal to zero: in such a case when the LP-CNN just does a dynamic filtering action
in which the state of each cell is independent on the evolution of the state voltage of the
neighbouring cells, we do not found a variation in Ne.

3.2 CNN for Edge detection

For this application we chose for the templates A and B the same values reported on Fig.
15 of [2]. As a processing example we used the 10xlO diamond structure of Fig. 8a. The
result achieved by programming the template coefficient values are shown in Fig. 8b. As
can be seen, results equal to those found by using the theoretical model of [1] have been
obtained. Additionally, results equal to those found in [2] by varying the template
coefficients were found.

3.3 Other examples
The designed CNN was also programme~d to operate other functions useful for image
processing such. [6 - 9] as hole filler, connected-component detector and shadow
detector. In all the examined cases the circuit simulation indicates a correct operation of
the CNN.
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Abstract

An operational transconductance amplifier with multiple inputs, each of them

realized by means of two MOSFETs only, suitable for implementation of

Cellular Neural Networks in CMOS technology is described. Preliminary

analysis of short-channel circuit augmented by SPICE simulation is given.

Results show potential ability of designing chip area effective networks

applicable to various tasks of image processing and pattern recognition in

real-time. This needs extention of the research especially in the aspect of

VLSI implementation.

1. Introduction

Even though the Cellular Neural Networks (CNN) as originally proposed in
[1,2] are expected to be very efficient in VLSI implementation the research
on this subject has not succeded so far in establishing standard circuit
realization of a single cell and architecture of *the network as a whole.
Structures of the cell circuits proposed in [3-6] are still far from solution
which can satisfy CNN requirements and more study augmented by computer
simulation and verification with VLSI test chips are highly recommended. The
first succesfully constructed chip of CNN connected component detector [7] is
very encouraging sign and stimulates the research in the hope of achieving
significant progress in this area.

Main question in the design of CNN cell circuit in VLSI technology is
how to solve efficiently the problem of controlling the cell by signals
coupled in from itself and other cells of given neighborhood in the network.
in this sense efficiently means realizability taking into account
restrictions of the VLSI design rules, minimization of the chip area and
power consumpticn as well as flexibility in implementation of dynamical
processing algorithms suitable for specific applications of CNNs.

List of design requirements for VLSI CNNs includes the following
technological problems:
1. Realizability of feedback operator A (cloning template), control
(feedforward) operator B and polarization vector I. This requirement is
limited by wiring method and floorplanning of the VLS layout. Due to this
limitations not every CNN can be realized in a given technology.
2. Programmability of operators A, B and I, defined as the ability to alter
the values of the weights between cells in a given neighborhood and values of
the polarization vector I. This ability extends CNN tasks that can be
realized in image processing and pattern recognition.
3. Method of inputing to and outputing from the CNN the visual information to
be transformed.
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4. Compatibility with digital microprocesor systems which enables
connection of CNNs as a extending cards for speeding up calculations.
5. An influence of nonidealities and tolerances of semiconductor elements as
well as frequency-dependent loss, crosstalk and immunity to electromagnetic
interference for stability of the CNNs.

Taking into account the main requirements as stated above we present
main results of our preliminary study of potential applications the concept
of multiple-input OTA circuit in CMOS technology [8]. We concentrate only on
the problem of designing the main block of CNN cell circuit, namely the block
of spatial convolution the outputs from neighborhood cells. Referring to the
nonlinear differential equation [2]:

CxVc = -V t / R + Ac: V + Bt v d + if (1)Xx x x d y d •

which describes the dynamics of the cell, this block realizes summation of
the three last components of the rigth-hand side of (1) or equivalently the
summation at node N currents comming from voltage-controlled current sources,
Fig.l.

(d6) (C ,n )vt Cr ()

control I feedback
(feedforward) VIVy / interconnect
interconnect...

V: ¢ V)C cell stateVC

+ IX +
cell input RX cell output

Fig. I. CNN cell circuit of the cell labeled by c. By dotted !ine• signaIs

camning from neighboring cells are drawn-

Results obtained during this work empower us to develop this idea much more
extensively, especially in the aspect of optimization of the VLSI cell and
programmability of the network in real-time image processing systems.

2. Multiple-input OTA circuit for CNN cell

The fundamental circuit of multiple-input OTA as proposed in [8] is

shown in Fig.2. The OTA is driven by two-transistors input structures (M kL -

MkU) connected in parallel to both sides of current mirror M - M . The

circuit output current I is equal to the difference in node currents Ia and
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Ib forced by left-hand and rigth-hand sides of input structures.

d,+5V

M L-M

j.* VivJ MkL. L
#-Sw

Fig.2. Multiple-input OTA circuit [81

Each two-transistors input structure, composed of lower MkL and upper Mk U

devices, provides its own branch current Iik dependent on input voltage V,,'

and bias voltage Vbk according to the formula, derived from square-law MOSFET

model:

Iik k ( Vbk VT) [Vik 0.5 ( Vbk VT A2)

where 1k = ji Cox W/L is determined by the fabrication process and the size of

k-th lower transistor MkL and VT is its treshold voltage. The equation (4) is

valid only in this case when the lower transistor operates in its active
(nonsaturated) region and the upper transistor - in its saturation, and while
the geometrical aspect ratio W/L of upper device is much greater then the
corresponding aspect ratio of lower device. It seen from (2) that any input
structure can be considered as a transconductance element controlled by input
voltage Vi of this element. The transconductance can be altered by the

transistor size W/L and/or by the bias voltage V. If necessary, the offset
voltage 0.5 (V bk + VT) contributed in a branch can be easily compensated by

the similar branch placed in opposite side of the OTA circuit.
Also, the offset component can be used for realization the vector IC.
Therefore, using thedse input structures one cap realize algebraic summation
of feedback (A d V ) and feedforward (BCd V ) signals of CNN cell as well
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as its bias current (IC).

Computer simulation shows that the error introduced in the approximation
(2) is negligible when the aspect ratio (W/L) is at least 200 times greater

then the aspect ratio (W/L) L Assuming 2 pm CMOS feature size this creates

large chip area occupied by single input and correspondingly very large area
by the whole cell (one cell can be controlled by 16 current sources even in
the case of minimal neighborhood radius).

To safe chip area the MOSFET technology with channel length down to 1 Pm
or even smaller should be used. However, for such small channel length new
transistor model with carriers drift velocity effect must be considered.
The use of the long-channel square-law model for the short-channel devices
gives considerable discrepancies in both the dc and transient solutions
between the calculated and measured results and can lead to incorrect
conclusions in regard to circuit performance. It was shown [9], that when the
power supply of +5V and -5V is used (which is typical standard supply in
digital-analog integrated circuits) then the MOS transistor model in
saturation for short-channel device can be described by:

ID = v satCox W ( V - V ) (3)

where v is carrier drift velocity saturation equal to approximately 7x10"

cm/s for both the NMOS and PMOS devices. As was expected in the theory of
short-channel devices, the drain current in saturation region of I-V
output characteristics does not depend on the channel length. Also, the bulk
effect is negligible and the output conductance of the device is included
through the threshold voltage dependent on drain-source voltage.

The I-V characteristic of the k-th two transistor structure (Fig.3) with
short-channel devices can be derived by equating the drain current of the
lower transistor MkL operating in nonsaturation with the drain current of the

upper transistor Mku operating in saturation region. After all stages of this

derivation one can obtain the following formula for the output current Ik:

Ik =13(V -V) [V -V_- 0.5 ( V -V)] I+ a(V -V)] (4)
k k bk T ik Lbk T ik T

where the constant a is expressed by (L k is the channel length of the lower

transistor):
a = WL /(v at Wu L ) (5)

Assuming transistors geometry: (W/L)u = (101.im/lpm) and (W/L) L = (lUpm/lopm)

and the value of electrons mobility p = 500 cm2 /V.s, constant a gets the
value a = 0.007 V'_. Therefore, for the voltage range -5V to +5V the
following enequality holds: 1 a(V i-k VT). In this case the formula (4) for

the output current of the transconductance element with short-channel devices
is equal to the corresponding formula (2) valid for long-channel devices, but
with considerable reducing of area uccupied by the element.

Fig.3 shows dc characteristics of the transconductance element. It can
be noted that for V. in the range between +5 and +1OV the element behaves

like a linear transconductor with the error of maximum value not exceeding
20% . Since neural networks do not require a very linear response, this error
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can be quite well acceptable for many CNN applications.

+ V0dA ------------- -+- ------------------
.... •ca"Lated ( C4)
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MkL VD"L . . . .an 
-.....-
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(CO (b)a
Fig.3. Two-transistor transconductance element with short-channpl devices

(a) and its DC transfer characteristics

3.00v----------------'---- -------Oa.-------+------------------------

MOSFETs LevatI 4: Vru (Irn.I 1 V

2-00V A, 0.02"V
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-20pA

-3. OOV I -40wA
-5v OV 5V -5V Ov 5V

Fig.4. (a) - dc voltage transfer characteristics, (b) - dc current transfer

characteristics for two-inputs OTA circuit of Fig.2. Results were obtained

using SPICE simulation with MOSFET model Level 1

Fig.4. shows simulation results of DC voltage and current transfer
characteristic of two-input OTA. It is seen from this figure that the linear
range of the output voltage spans of several volts while controlling the
input almost from minimal to maximal voltage of power supply. This output
voltage range is also quite well acceptable for most applications of CNNs.
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3. Conclusions

A multiple-input OTA circuit as proposed in [8] has been adopted in
preliminary analysis of VLST CMOS implementation of Cellular Neural Networks.
The circuit generates an output current which is a linear function of sum of
the feedback and feedforward signals coming from neighbour cells.
The circuit enables to alter the transconductance value of each
voltage-controlled current source by means of changing the bias voltage
of upper MOSFET device, as well as by means of changing the aspect ratio
(channel width to channel length) of the lower (controlled) device. This
makes good flexibility in the design of CNN cells ani the whole circuit
for given image processing and/or pattern recognition applications. SPICE
simulation and hand analysis of the circuit with short-channel devices show
quite good linearity with eccnonidcal occupation of chip area. Future work
should be concentrated on simulations dynamical characteristics and on design
procedure for specific CNN applications.
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Abstract

In [5] an analog implementation of discrete-time cellular neural networks is described that
is based on the idea of conductance multipliers [1], [10], [7] and transconductance amplifiers
[8], [11]. The circuit architecture takes advantage of differential currents suppressing dc dis-
turbances. The paper gives new measurement results that compare the fabrication tolerances
between different cells on the chip and the offset of the single cells.

1 Introduction

Cellular Neural Networks [2] have been shown to be an efficient tool in image processing. How-
ever, the whole capability of the system is only exploited if specific hardware realizations are
provided. Analog VLSI implementations have the advantage that the CMOS transistors are not
only used as switches leading to a very small number of devices and therefore low chip area. On
the other hand analog circuits are much more sensitive to disturbances and can only be applied
if the architecture is robust enough. For cellular neural networks analog proposals are given in
[4], [3]. In [9] a circuit is described realizing a discrete-time implementation of this architecture.
The circuits differ in programmable and fixed template coefficients or in an additional local logic
for the output states.

Discrete-time cellular neural networks (DTCNN) [6] are derived from CNN and the discrete
Hopfield model. The network is described by the recursive algorithm

zc(k) E aedyd(k) + _, bpdud + ic (1)
deNr(c) dEN,(c)

Sforzx c(k - 1) 2! o
Yc(k) = f(--f(ko- 1)) -- 1 for x(k- 1) < O. (2)

if time-invariant templates and inputs are assumed. The variables and coefficients denote:

xe(k): cell state ac: feedback coefficient N,(c): r-neighbourhood
yc(k): cell output bd: control coefficient

uc: cell input ic: threshold

0-7803-0875-1/92 3$.00 019921EEE
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The cells are only locally connected within the r-neighbourhood [2], which is defined as the set
of all cells within the distance r including cell c. In contrast to the CNN, the nonlinearity is a
threshold function and the system is clocked. The constant part can be summarized to the cell
bias

kc= kc(U)= bCddu + ic. (3)
dEN,(c)

2 Circuit Architecture

An analog circuit is discussed in [5], [6] for realizing the DTCNN. It implements the feedback
part with a 1-neighbourhood on a hexagonal grid and programmable weights. Fig. 1 gives the
circuit structure for a single cell realizing the algorithm (1), (2).

S... . "•TP 1 92• o-

y
OTSO

The op rai onlta s o d cae-apife OT_ i sd wti h i errn et r vd

-V'Vu

Y ,Y C -C

differential output current that is proportional to the input voltage vk, wih crep nst

the constant cell bias kc. The capacitor Ca realizes an analog memory and is charged via the

bus IN, which is activated by SIl. This enables data transfer by the matrix concept, where a

whole column is read in parallel. The feedback of the binary outputs v'v = vy Ti ahee

ic -b Rx Tiso ahee

by the conductance multipliers, which are controlled by the global weight voltages -±v~d. Here,

VT denotes the threshold voltage. Their output currents are summed and transformed into a
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voltage v 1l and v• 2. Then a difference voltage

vi(kT) = v~ 1(kT) - v• 2 (kT) = RP(if(kT) - i(kT)) = R., Ac((k - 1)T) + gmvkc
(dENrd c) d

(4)
is obtained , where g,,, denotes the conductance of the OTA2 and

wS= 2TpCoxvd. (5)

The parameters W and L define the transistor geometry; ji is the mobility and Co, the oxide
capacitance per unit area.

The OTA1 is operated as a comparator and decides the sign of the state voltage v. = VC1 - v' 2.
The system is switched into the next output state by the dual nonoverlapping dock signals V,
and ýp. Data are read out via the bus OUT when activating the transmissiongate T3. The initial
values are loaded by the bus IN using the transmission gate Ts. For a detailed analysis refer
to [5], [6]. A 4 by 4 cell chip has been designed for experimental purposes using this circuit
architecture.

3 Measurement Results

In CMOS processes fabrication tolerances may occur, which are related due to small changes
of the oxide thickness, different donor concentrations and a possible fringing of structures. This
may cause different threshold voltages for the transistors leading to deviations of the saturation
currents. Some of the effects can be suppressed by a specific geometrical design in the layout,
but in general they cannot be excluded. This section gives static and dynamic measurement
results of the test chip described in Section 2. It has been fabricated on a standard digital 1.5 j
single poly double metal process at ES2.

If all weight voltages ±v=: and the input voltage vZ are set to zero, a constant cell offset has
been observed, which is given exemplarily in Table 1 for a single chip.

cell 1: cell 5: 0.21 V cell 9: 0.11 V cell 13: -0.04 V
cell 2: 0.04 V cell 6: 0.13 V cell 10: 0.04 V cell 14:
cell 3: cell 7: 0.02 V cell 11: 0.16 V cell 15: 0.11 V
cell 4: 0.00 V cell 8: 0.18 V cell 12: 0.02 V cell 16: 0.18 V

Table 1: Offset voltage of the cells.

Cell 1, 3 and 14 have no measurement bus for the state voltages v.l and uf2 and, therefore, their
offset cannot be determined directly. The cell offset is caused by a mismatch of the differential
currents of each circuit component, which is summed up in the worst case. Compared with the
maximum linear range of ±-2 V of the transconductance amplifiers OTA2, this offset seems to be
very large. However, it is a constant value and does not change during operation. Hence, it can
be compensated with the input voltage vk of the OTA2 . This makes a complex compensation
circuit superfluous.
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Fig. 2 shows the transfer characteristic of the offset compensated OTA2 for 13 cells, if all weight
voltages are set to zero. The bias voltage of the OTA2 has been chosen to vb2 = -1.35 V and
vt, was set to -2.0 V. The power supply amounts to vdd = 2.5 V and v, 1 - -2.5 V.

C C•

muV

-1 .5 -1 -0.5 0 0.5 1 1.5

Vkc in V

Figure 2: Dc transfer characteristic of the OTA2 for 13 cells.

I 0........................................ ... ..

n V

-2 ............. i.............. :..... ........ : .............. .............. .............

-1.5 -1 -0.5 0 0.5 1 1.5

Viý in V

Figure 3: Dc transfer characteristic of a single conductance multiplier for 13 cells.

Since the saturation voltages are slightly different, their slopes have identical values withfin a
linear range, which stretches between -0.5 V and 0.5 V. The slope of the OTA 2 can be adjusted

by the bias voltage Vb2. Then, the saturation voltage is shifted between 0 V and 2 V, too, while
the linear range remains unchanged. It corresponds to a gain between 0 and 3.0 of the input
voltage. Because the resistors R,, have been designed to a resistance of 200 kfW, a maximum
transconductance g,,, = 15 pS has been obtained for the OTA2.
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In Fig. 3 the dc transfer characteristic of a single weight coefficient is illustrated for 13 cells. The
remaining feedback coefficients axe set to zero and the input voltage vk compensates the offset.

The linear range stretches between -0.9 V and 0.9 V with a gain of 0.8. This corresponds to
a maximum absolute value of 5 pS for A', when inserting the process and design parameters
in (5). No significant deviations have been observed for different weight coefficients. This is also
true for a comparison of the characteristics between different chips.

The network variables and parameters axe retransformed by

v•(kT) vy(kT) kCg- VgmR(
acd= AcPR., Yc(k)C- yC(k) = Va ' Vka= (6)

to obtain the algorithm (1), (2). The constraint yC(k) = ±1 implies V., =1 vy(kT) J= vc-VT =
0.8V. This leads to kc E [-2.5, 2.5] and xc(k) E [-3.75,3.75] if a linear range of ±1.5V is assumed
for vc, and v• 2 . For the feedback coefficients, ac E [-1,11 is obtained from (5) and (6). Notice
that the output voltage v'c can be used for scaling, too. It adjusts the range for kc and xc,

because it determines the reference voltage V. t. Then, the power supply of the inverters 13 and
14 in Fig. 1 consists of a scaling voltage vacd.

As an example for dynamic testing, the connected component detector was chosen with the
initial pattern on the left side of Fig. 5. A cell bias was loaded to compensate the constant cell
offset and the weight coefficients have been set to the values in Fig. 4.

0.5

05

Figure 4: Weight voltage ve of the feedback coefficients in V.

Fig. 5 shows the time-dependent development of the output pattern. After four iterations all
outputs axe constant. The circuit could be operated even with a dock frequency of 10 MHz.
However, for smaller weight coefficients the maximum dock rate goes down.

X0) ,(O) ,(2) y,3) X(4)

Figure 5: Time-dependent development of the output pattern.

4 Conclusion

The mesurements have shown that the applied architecture was well suited for the realization

of discrete-time cellular neural networks. Especially the large computation speed demonstrates
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the performance of this network structure. Improvements are desirable in the linear range of the
transconductance amplifier, because this device needs a large operation range to compensate the
output currents of all conductance multipliers as required for many applications. Disturbances
in the input voltage imply a large deviation of the state voltage, since they are amplified by
the gain of the OTA, which may be much larger than the gain of the multipliers. Hence, the
bias voltage of the OTA should be adjusted so that the maximum requested absolute value of
the cell bias is yet reached. Further improvement of the circuit properties could be achieved by
using cascoded current mirrors. Since their transistor geometries can be chosen very small the
size of a cell is not significantly increased.
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Abstract

A general technique for continuous time (CT) and discrete time (DT) Cellular Neural Networks

(CNNs) implementation using current-mode techniques is presented. The proposed methodol-
ogy yields high pixel densities, high speed and low power consumption, while the design proce-
dure is extremely simple. Resulting circuits are well suited Jrr standard digital CMOS
processes, since only MOS transistors are required. CNN cell layouts are shown together with

electrical simulation results from extracted netlists of complete networks. Montecarlo analysis
demonstrates the viability of the proposed techniques. Basic building blocks have been experi-
mentally tested.

Introduction

Cellular Neural Networks are two-dimensional arrays of locally interconnected cells. Each cell
in a CNN has three associated variables, namely:

"* Cell state: xC(t), which conveys cell energy information as a function of time.

"* Cell output: yC(t), which is obtained from the cell state via a nonlinear limitation:

yc(t) 1 (Ixc (t) + II -Ixc (t) - 11) = f(xc (t)) (1)

"* Cell input: uc, representing external excitation.

The behavior of the network is governed by a system of dynamic equations, one for each cell,
which in the original model are given by [Chua80a]:

dxC(t) xc(t) +Dc+ I {Ayd (t) +Bcud Vce E vD (2)
Ed N,(c)

where the coefficients Ad" and Bd, with d e N,.c), can be arranged into two matrices, called the

feedback and control templates respectively, and Dc is the offset term. The time constant t is
invariant from cell to cell.

The CNN description summarized above corresponds to a CT system. The same input/output
mapping can be obtained, under some restrictions, from a DT system obtained using some

explicit integration algorithm. The simplest choice is Forward Euler, which results in

xc(nT+ 1) = xc(n) +T x[_(,() +Dc+ {aCyd (n) +Bdud}1 VCE q}L (3)tLnl =cn+ ,e N,(c)J

0-7803-0875-1/92 3$.00 019921EEE
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where it denotes the DT instant and T is the time interval between DT instants. Stability of this

system and accuracy in the emulation of the CT model is strongly influenced by the ratio T/c,

which also influences the number of DT instants required for convergency. A good heuristic

choice, which has always given correct results in our trials and which significantly simplifies

cell design is T/T= 1. With this assumption, (3) can be written as

yc(n+l) =f Dc+ Jc +d , (4)
d E N, (c)

where f(.) is the nonlinear function in (1). Note that state variables do not appear explicitly in

(4) and, hence, they are not required. In this case, signal ranges of all variables in the circuit are

the same, as opposed to the original CT model in which a higher signal range is needed for state

variables [Chua88a].

Practical use of CNNs in any of its potential application fields [Chua88a,b] requires feasible and

efficient implementation techniques. Major trends are area and power efficiency, operation

speed, testability and ease of communication with the outer world. Current-mode techniques

[Toum90] are proposed for CNNs implementation in this paper. The results obtained show bet-

ter area, power and speed figures than previous proposals [Cruz9l, Halo92, Harr92].

Current mode basic building blocks

The operations required for the implementation of (2) and (4) are: summation, weighted repli-

cation, nonlinear limitation, integration (CT), and one clock-cycle delay (DT).

Summation is achieved in current-mode by simply routing different signals to a common node.

Weighted replication is obtained by using a simple analog circuit: the current mirror. In MOS

technologies, the weight is controlled by the sizes of the input and output transistors in the rair-

ror. Since in current mirrors currents always flow in the same direction, bias shifting is required
to allow for the symmetric existence-interval of the variables. These concepts are illustrated in

Fig.l(a) and (b). Several output currents with the same or different scaling factors can be

obtained by using different output transistors.

In Fig. 1 (b), a saturation nonlinearity appears as a result of the cut-off of the input transistor. By

cascading two of these structures, the nonlinearity in (1) is obtained, as shown in Fig.2.

The basic dynamic block for DT systems is obtained from the circuit in Fig.2 by introducing

switches in the gate-voltage paths of the current mirrors, as shown in Fig.3. Each switch is

driven by one of two nonoverlaped clock signals, yielding a full cycle delay.

Finally, Fig.4 shows a CT lossy integrator which performs according to the following equation

dlo" dtI- , +, (5)

where c is given by C=C/g, gn, being the small signal transconductance of the transistors in the

current mirror. Although the time constant -t is a function of the output current (through gn), it

can be shown that this does not affect the dynamic properties of the cell. Bias current in the inte-

grator must be adjusted to provide enough range for state variables. An expression for this

range, usually between 5 an 10 times that of the output variables, is given in [Chua88a]. In addi-

tion to the integrator, the block that loads it must be capable of sinking (sourcing) currents in

the same range.
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Cell architecture

Designing CNN cells described by (2) or (4) is straight forward using the blocks described in
the previous section. Fig.5 shows a schematic diagram of a cell valid for both approaches.

Weighted replication is achieved with the circuit in Fig.l(b). When sign inversion is required,
an additional replication stage is cascaded. In the CT case, tile dynamic block consists of a CT
integrator loaded with a bias shifted current mirror. Both the integrator and its load must have
enough signal range for the state variable. The nonlinear limiter truncates the state variable to
the limits of the output variables. In the DT case, the dynamic block consists of the delayer in
Fig.3. This block also acts as a nonlinear limiter Hence, the limiter block in Fig.5 can be elim-
inated.
For simplicity, I/O circuitry has not been included in the diagram in Fig.5. Initial state values
xC(O) and extcrnal inputs uc can be electrically set, or optically transimitted using photoactive
devices [Sayl9l I. Output of each cell can be evaluated with the help of an additional replication
branch. Fu-Ther 1/0 considerations are left aside in this paper due to the limited available space.
Note that weighted replication is performed at the output of each cell. In other words, each cell
produces a different Outlput, wilh the required weight, for each neighbor. At each cell, neighbor
contributions are summed at the input node as they are received. In order to avoid confusion
when designing current-mode CNNs, it is convenient to work with new template matrices,
obtained from the original ones by interchanging entries along all radial lines of the matrices.
To conclude this section, Fig.6 shows two complete examples of cell schematics, one for CT
and another for DT. Both are designed for connected component detection (CCD). Note the
reduced complexity achieved with the DT approach, due to the common ralge of state and out-
put variables. This results in significantly better area an power figures. On the other hand, prob-
lems associated to DT analog circuits must be taken in account (feedthrough, noise). A new CT
CNN model which combines the advantages of the DT approach is described in a separate paper
[Huer92].

Results

Several prototypes have been designed following the proposed technique on a 1.61irn single-
poly double-metal digital CMOS process. As an example, results of a CT CNN for CCD will be
described here. The design actually includes two prototypes, each with sixteen cells in a row.
First prototype (PI) corresponds to the schematic in Fig.6(a) while the second one (P2) corre-
sponds to the simplified CT model mentioned above, whose schematic can be viewed as that of
Fig.6(b) when both switches are simultaneously on. Area and power figures of prototype P2 are
essentially the same than for a DT design.
Design process begins by choosing a unitary bias current (IQ) which in our case was 2gA. A
current mirror capable of driving 21Q and a IQ current source must then be designed. In our pro-
totype, cascude stLuCtures were used to implement both the current mirror and the current
source, all transistors having w/I=4.0tmi/3.2ptm. After this steps, implementing any CNN is just
a matter of combining the same building blocks.
Power calculation is extreiviely simple from cell schematic. With a 5V power supply, PI con-
sumes 290pW/cell, while P2 takes only 901.tW/cell. Fig.7(a) and (b) show the layouts of P1 and
P2 single cells respectively, including the initialization circuitry, an extra output for evaluation
purpose, and the necessary spacing and lines to be connected by abutment with neighboring
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cells. Area figures are 16.368prm2/cell (equivalently 61 cells/mm2) for P1, and 8303pam 2/cell
(equivalently 120 cells/irai 2) for P2.
Fig.8 shows simulated electrical results fromn the layout-extracted netlist of the prototype P2,
which is slightly faster than P1. In order to test the prototypes with digital testing equipment,
interfaces are used in the design so that chip I/O is performed in voltage form. In Fig.8, high
voltages (5V) correspond to +2ptA, while low voltages (OV) correspond to -2piA. Boundary cells
are set to a low state value. Note that convergency time is only 3.51gs, with 16 cells in a row.
Finally, Montecarlo simulations showed 90% and 100% insensibility to process and geometries
variations (out of 30 trials) for prototypes P1 and P2 respectively.

Conclusions
A general procedure for the design of continuous and discrete time CNNs using current-mode
techniques has been presented. The circuits obtained with this methodology are advantageous
in terms of area, speed and power over previous implementation techniques. Several prototypes
have been designed, the results been highly insensitive to process and design-parameter varia-
tions.
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Figure 7: Cell layout for two CCD prototypes: a) prototype PI ; b) prototype P2
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Abstract

This paper is concerned with an optical implementation of Cellular Neural Net-
works, defined by a template with non-zero feedback operator. Two design rules
which consider a transient duration of optically realized CNNs are formulated. A
possibility of an increase in a resolution of images, which are to be processed in the
optical system, is also discussed. The rules formulated in the paper are applied into
a CNN design procedure - an optical imrplementations of two distinct Hole Filling
CNNs and a Shadow Detecting CNN are analyzed.

1 Introduction

The Cellular Neural Network paradigm (abbreviated henceforth CNN) [1] has attracted
a lot of interest because it offers a natural way of solving many of image processing

problems and a feasibility of simple CNN circuits (as e.g. [2]) VLSI implementation.
However, problems with impiementing highly interconnected CNN. composed of large
number of cells are severe. An alternative mean for a physical CNN realization, which
allows for overcoming these difficulties, is the optical system proposed in [3] and [e.].
Specific properties of the optical system should be considered in deriving CNN applications
which are to be realized optically, since then we can exploit the system advantages and

minimize its drawbacks.
The main subject of this paper is a determination of ways which allow for increasing a
processing speed of optically implemented feedback CNNs. A CNN is referred to as a
feedback one if there is at least a single non-zero element in the feedback operator (A) of
the circuit template (see [1]). Another issue which is discussed in the paper is a possible
increase in a resolution of images which are to be processed.
The main results of the paper are following:

9 Design rules which can be incorporated into a CNN design procedure and which
concern a convergence speed of optically realized feedback CNNs are presented.
Conditions which allow for an increase in a resolution of images which are to be

processed in the system are formulated.
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The paper has the following structure. Basic processing properties of the optical system
are outlined in Section 2. The design rules, which concern a processing speed of opti-
cally realized CNNs, axe formulated in Section 3. Section 4 considers a possibility of an
increase in a resolution of images which are to be processed in the system. The results
of presented considerations are applied to analyze an optical implementation of some of
existing feedback CNN applications in Section 5.

2 Processing properties of the optical system

The optical system implements physically a CNN model which combines the discrete-
time version of the cell state equation [1] (where a time step is chosen to be: At = as
proposed in [5]):

Vxz,(n + 1) = *j j A,. Vk+,.,+I(n) + 2 2 Bd . VuA.+,,,+• + I (1)

and a sigmoidal output transforming function, which approximates the cell output equa-
tion [1]. The symbols Vzi,, Vy,,, Vui,, A1,, Bja, I have the meaning defined in [1].
The most attractive properties of the optical system are: a realizability of CNNs composed
of a large number of cells (which means a possibility of high resolution image processing)
and an ease of large neighborhood-size templates realization. However, it should be no-
ticed, that due to a special coding scheme ([3],[4]), a maximum resolution of images which
can be processed in the system is generally four times lower than the available resolution
of the system input device (Liquid Crystal Light Valves array).
A presence of feedback allows for exploiting a global information by every circuit cell,
despite a local interconnection pattern. In the case of discrete-time CNNs this interac-
tion at large distances occurs indirectly, through cell outputs, in consecutive iterations.
Realization of every iteration requires closing a feedback loop, i.e. transferring results
obtained in some earlier step from the system output back to its input. This is highly
time-consuming operation, which severely slows down a system processing speed (compu-
tations are performed at the speed of light), and can be regarded as the main drawback of
the optical system. Therefore the following conclusion concerning processing properties
of the optical system can be formulated:

9 Applications which require a large neighborhood-size and a small number of itera-
tions to complete a network transient are well suited for the optical CNN realization.

3 A processing speed of optically realized feedback
CNNs

The optical system, despite its drawbacks, can appear the only physical mean of some
CNN circuits realization. Therefore it is necessary to investigate possible ways of improv-
ing system properties, in particular, ways of increasing its processing speed. Some CNN
design methods for feedforward-only CNNs has been presented in [6]. This paper focuses
on a feedback CNN template design.
Let us consider the following process:
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a cell cj output follows a transition from '-1' to '+1', which occurs in the output of any
of its neighboring cells, unless some condition related to inputs analyzed by a cell cij is
satisfied, -
and let us refer it to as a high output propagation. A low output propagation is understood
analogously. These phenomena are present in many CNN applications introduced to date
([7], [8], [9]). If a CNN which is to be implemented optically involves a propagation
phenomenon, it should be designed in a way which ensures completing this process in a
minimum possible number of iterations. Therefore, some means which allow for obtaining
this goal should be included into a CNN design procedure.
A simple analysis of the propagation phenomena allows to determine some template prop-
erties which allow for an increase in a processing speed of optically realized CNNs. First,
observe that if a given cell is allowed to change its output, this change should have the
maximum possible magnitude in response for any change occurring in outputs of its neigh-
borhood. This means that a change of an absolute value: AVy = Vy,. - Vy,., (i.e.
A Vy = 2 for Vy,,,, = -1 and Vy,, = +1) should occur in a single iteration. This leads
to the following conclusion, which can be considered as an auxiliary CNN design rule:

Rule 1 Suppose, that we have a processing problem which involves a propagation of high
or low output and which is to be solved in an optically realized CNN.
Template element values should be chosen to ensure a binary output from any cell in
response to any combination of cell controlling signal values which can appear in this
network, i.e.:

E >2 Ala . Vyk+41+j(n) + E B1 k1" Vui,+i,,+j + II > 1 (2)
ki ki

Note, thut if this condition is satisfied, all cell outputs are binary during a processing, so a CNN
behaves as if it is composed of elements with a. step-like output nonlinearity
Observe further, that if we increase a cell neighborhood-size then a cell can respond for a
change occurring in more distant location. This reasoning leads to a conclusion:

Rule 2 Mazimurn neighborhood size, which allows for realizing given processing prob-
lem, should be considered in deriving CNN templates to ensure minimizing of a transient
duration in optically realized feedback GNNs.

4 A resolution problems in optically realized feed-
back CNNs

Let us consider a coding scheme for signals which are to be processed in the optical system,
presented in [3],[4]. An input information loaded into the system is stored according to this
scheme in an input Liquid Crystal Light Valve array (abbreviated LCLV). Half of all of the
available LCLV ar.ray elements are used for storing values which are to provide a required
shift in a signal dynamic range. This shift includes a CNN bias (I), but primarily it is to
allow for a discrimination between negative and positive results of optical computations.
A result of the optically computed cell stUe (1) is represented by a light vector V2,
which has the magnitude given by:

V I,(n + I) k- . (> Ak(Vyj,+,,g+j(n) + 1) + E Bkt(Vuk,+,j + 1) + d + 1) (3)
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where k is some positive constant, d represents an additional shift, and terms '+1' axe
introduced because transmissivities of light valves, which are proportional to CNN signals,
are non-negative.
Let us assume that a CNN bias (1), which can be considered as a shift in a dynamic
range of the state equation (1), is realized in an electronic feedback path of the system
(by means of a level shifter) rather then in an optical signal path. It can be shown that
errors, caused by inability of discrimination between negative and positive magnitudes of
vectors Vxzj, can be neglected in a signal processing if the following relation holds:

IVZ1_l > IVX•,,,1 (4)

where VX -I is a magnitude of a light vector which corresponds to the value '-1 of the state
equation (1); Vzxin is a magnitude of the light vector which corresponds to a minimum
value of the state equation.
Note that, if there is no entries which code a bias and shift in the LCLV array, a zero-level
of optically computed cell's state is in fact shifted by a value of: k (. AA. + Z B - I).
Thus, magnitudes of VzLI and Vz,., can be evaluated using the formulas:

VzL1 = k. (EAl + ZBk - 1 - 1)

V4,m,=k.(-2, IAkdI-2ZBhd-I) for Ak 1,B, <0

The following conclusion can be formulated:

e If the light vectors priven in equation (5) satisfy the relation (4) then it is possible
to realize a bias in an electronic part of the system, and consequently, to double a
resolution of images which are to be processed in the system.

Observe, that if the relation Z A,4 + Z Bt, = I holds, and the condition (4) is satisfied,
then no shift is required in the system.

5 A design of optically realized CNNs

Templates for two of already existing CNN applications are analyzed in this sectiou in
the way which takes into account a convenience of their optical implementation. The
CNNs considered are: the Hole Filler, presented in [7] and [10], and the Shadow Detector,
presented in [7].

5.1 A modification of the Hole Filler template

An analysis of the Hole Filler operation shows, that only the first of the formulated rules
can be applied into a template design procedure. One can notice, that comparing two
proposed hole filler templates ( [7] and [10]), only the first one (proposed by Matsumoto
et all.) complies to the first rule, so it is expected to ensure the faster convergence in
the optical system. Results of computer simulations which verify this hypothesis are
shown in Figure 1. An image which is to be processed is given in Figure Ia, a processing
result is shown in Figure Ic. This is obtained in 50 iterations when the first of considered
templates is used, while it takes 60 iteratiorn to reach this result in the latter case. Figure
lb presents the CNN output after 50 iterations in the case when the template Oiven riol
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a. b. C.

Figure 1: A comparision of the hole filling operation

is used. Initial states of all boundary network cells are set to '-1' and of the remaining
ones are set to '+1'.
Observe, that template elements of both hole filler templates satisfy the condition (4):
V1,n = -1, V11 = 10 in the former case, and V,, = 0, V!L = 10.5 in the latter case.
Therefore, if we realize an appropriate signal range shift in an electronic path of the
system, a resolution of images which are to be processed can be doubled.

5.2 A modification of the Shadow Detector template

The second example shows the application of both rules in order to derive an alternative
template of a shadow detector. Let us assume that we increase a neighborhood size of
a template (i.e. r = 2 instead of r = 1 as it was given in [7]). Applying the first of the
formulated rules into a design strategy proposed in [10], the following element values can
be obtained:

A=[0 0 1 1 ] 1=2

A processing example given in Figure 2 compares an operation of a CNN defined by
this template and an operation of the original Shadow Detecting CNN. An image to
be processed is presented in Figure 2a, the processing result, which is obtained in the
former case after 14 and in the latter case after 28 iterations, is given in Figure 2c, while
the output of the original Shadow Detector after 14 iterations is shown in Figure 2b.
Appropriate templates for neighborhood size larger than r = 2 can be easily derived.
A correct processing can be obtained if it is assumed that after every iteration right
boundary cell states (outputs) are set to '-1' regardless of computation results.
Note, that a resolution of images to be processed in the case of proposed template equals
a resolution of a LCLV device if an appropriate shift is realized in the feedback path of
the system.

6 Conclusions

Possible methods of improving processing properties of optically realized CNNs were pre-
sented in the paper. An application of two design rules, which has been formulated, can
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a. b. c.

Figure 2: An operation of a shadow detection

result in an increase in the processing speed of some optically realized feedback CNN
applications. A realization of a signal dynamic range shift in an electronic feedback path
of the system can allow for an increase in a resolution of images which are subject to
optical processing.
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Abstract

The programmability (as a stored program) of the CNN Universal
Machine is discussed first. It is shown why and in which sense this
machine is universal. A new type of algorithm, the analogic one, is
introduced. The application potential is reviewed and the biological
relevance is analyzed. It turns out that the architecture is optimal not
only for silicon implementations, however, many biological information
processing organs have the same structure.

1 INTRODUCTION

Since the invention of the Cellular Neural Network [1] several extensions [2-7,

etc.] formed the CNN (cellular nonlinear network) paradigm. CNN is now an

established field. In our companion paper in this volume (Part 1) we gave a taxonomy

and introduced the architecture of the CNN Universal Machine.

In this paper we show the key part responsible for implementing the analog
stored program concept (Section 2). In Section 3 we discuss the universality of this
machine and the characteristics of the analogic (dual) CNN algorithms. In Section 4 the
key application areas are reviewed. Section 5 contains some examples and motivations
concerning the biological relevance.

2 THE ANALOG STORED PROGRAM IN THE CNN UNIVERSAL MACHINE

The key issue in inventing the digital computer was to represent the program
as data (J.von Neumann). A condition for -... cent impiementation is that the time for

0-7803-0875-1/92 $3.00 019921EEE
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changing the instructions is normally smaller or comparable to the instruction execution

time.

Considering the standard fully connected analog neural networks, it is obvious
that the latter condition is unimplementable. Partly because the storage space of a
single program "instruction" is prohibitively large, partly because the reprogrammability
takes more time than the execution time itself. This is a point where the local
connectivity comes into the picture. Namely, if we consider a CNN cloning template as
an analog instruction [2d], then we have only one or two dozen analog values for an
instruction to be stored even if we have thousands of processors. On the contrary, in

case of a fully connected analog synchronous neural network (e.g. the Intel 80170 [9])
we have about 10 000 analog values for 64 processors and their reprogrammability

takes considerable time.
to all cells
controlling the to all cells
cloning templates controlling LLU

to all cells
controlling

GAcU the switches
,or SCR

Figure 1 The GAPU
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The analog instructions in the CNN Universal Machine are stored in the analog

program register (APR) of the global analogic program unit (GAPU). The structure of

the GAPU is shown in Figure 1.

The analog memory elements in a single line of the APR is equal to the nonzero

cloning template parameters. The selection of the appropriate template is made by the

global analogic control unit (GACU) which is a logic unit. The logic program register

contains the local logic instructions. The switch configurations of the cells, including the

selection of the appropriate local analog output unit (LAOU, defined in Part 1) can be

coded and stored in the SCR register (switch configuration register). The machine code

of the analogic CNN program is stored in the GACU.

The high level description of the analogic algorithm is translated by a compiler

into this machine code.

3 UNIVERSALITY AND THE ANALOGIC ALGORITHMS

We have shown [2c] that the game of life can be implemented by a CNN. Since

the game of life algorithm is equivalent to a Turing machine, therefore the CNN is

universal in a logic sense. As an analog operator, we have shown that any nonlinear

operator with fading memory can be realized by delay-type neural networks [8a]. Here,

the open question is: how many elements do we need?

The flexibility of the CNN is not only theoretical. Indeed, using our CNN

Workstation it is easy to write and run analogic CNN programs. As an example, Figure

2 shows such an algorithm in a block diagram form. The details of the algorithm can be

found in [2c]. It has been used for detecting texture errors in textiles monitored through

a camera. Here only the structure of the algorithm is important. In this algorithm we

have parallel branches as well. A key point in the implementation of the analogic (dual)

CNN algorithms that all intermediate results which will be used later are stored locally

as analog values. Therefore, in the cell of the CNN Universal Chip a local analog output

memory is used to storo as many analog values as the maximum number of parallel

branches. The local storage provides extremely high speed. We need to output the

results after the whole analogic algorithm is completed, thus providing a high output

throughput.

Now, we have analogic algorithms, instructions, subroutines, programs,

compilers. This provides to build up a CNN software library. The CNN universal

Machine is the workhorse for running the analogic CNN programs.

183



CRAY SCAL'E PICTUREI
ajveragej template

BLACK & WHITE PICTURE

vet tem~plate

I
VERTICAL FIEBERS
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Figure 2 The flow diagram of an analogic (dual) CNN algorithm

4 KEY APPLICATION AREAS

In the CNN literature (see [7a-7e] and the references of Part1) we see how

many application areas have been discovered. Without completeness let us list some

major fields:

- Image processing including gray scale image inputs

- feature extraction

- motion detection and estimation

- path tracking

- collision avoidance

- halftoning including motion

- object counting and size estimation
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- Analyzing 3D surfaces

- detection minima and maxima

- detection areas where the gradients exceed a given limit

- Solving partial differential equations

- Reducing non-visual problems to geometric maps

- thermographic images

- somatosensory maps (tactile sensing)

- antenna array images

- different medical maps and images

- Modelling biological vision and other sensory-motor organs

System integration

Since presently the analog VLSI CNN chips are mainly small scale experiments,
and not considering the software tests of key effects for different applications, the few
emerging real-life application projects known to us are using digital CNN hardware
accelerators.

Detecting manufacturing errors in a printed circuit board production line,
multifont character recognition, and optical tracking of prescribed curves in robot
motion were the three projects we have started. The details are published elsewhere
[7a-e]. However, we have found some common problems. Namely,

- the throughput problem of the input interface (the ideal solution is the direct optical
input on the chip, or the direct camera interface for the digital CNN hardware

accelerators),

- the changing illumination circumstances and colour effects at the actual site (different
materials in the printed circuit manufacturing, the different qualities of papers and prints
in case of character recognition, and the changing environment in case of the robots),

- the throughput problem at the output, especially in detection type tasks,

- the optimal implementation of the analogic (dual) CNN algorithms as to the area

(memory) and time complexity is concerned.

4 BIOLOGICAL RELEVANCE

In many living neural organizations the neurons are placed regularly in laminae
packed upon each other, and the neurons are locally connected within a receptive field.
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The functionality of the organ (e.g. retina, LGN or visual cortical area) is determined by
the neuroanatomical receptive field organization and by the synapse types. The CNN

model, invented for artificial electronic information processing, has the same structural

and functional characteristics. Until recently, both areas were developing
independently. It was our fortune that in a nice and challenging collaboration [25] it
turned out that almost all relevant notions in both fields can be matched. Thus it is our
hope, and indeed the reality, that some known neural structures can be translated into

CNN models which have the one-to-one silicon chip implementations. Moreover,
apparently, the CNN model could play a role in discovering hidden living functionalities

as being a unifying programmable model for many biological phenomena [26]. The

receptive field organization is represented by the cloning template of the CNN.

A few years ago there were a couple of electronic circuit models discovered

and implemented on silicon chips to mimic specific neural phenomena. A famous
example is the so called silicon retina of Carver Mead's group at Caltech in Pasadena

[13]. Indeed it is a very special case of a CNN model, a resistive grid characterized by a

simple cloning template.

Neuromorphic computing is nowadays a new challenge [27]: how to translate
one-to-one a living neural structure into a programmable analog computing chip. The

CNN Universal Machine and Chip is providing a solution. We have found also that the

famous triad synapse model [14] can be represented by a simple CNN template,

playing important role in motion related actions as well.

Below we show some characteristic examples [25b]. The Herring grid illusion
without the central patches (taking into account the amacrine cell effects) and the arrow

head illusion with its CNN template.

Another important fascinating area is the so called multi screen theater [18].
The fact is that from the same scene, preprocessed by the eye, several different
retinotopic maps are generated [17,19,28]. Later, these maps are combined to

discover more complex events. This phenomenon can be directly modelled and

computed by the CNN universal chip.
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(a) (b)

(C)

Figure 3 The Herring grid illusion.

The input we look at (a), the result using a resistive grid (b), and the result when
modelling the amacrine cell layer by delay-type templates (c). Indeed, we do not see

the patches in the middle of the black squares.
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Figure 4 The arrowhead illusion and the CNN template

Although the distances between the arrowheads are the same in both cases we see

defferent distances.
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ABSTRACT The cellular neural networks for extracting line segment features are
proposed. The features Include a middle point, length and angle of the line segment. Based
on these features, appropriate standard patterns are selected. The feature distribution
of the standard patterns are mapped onto that of the handwritten pattern. The feature
mapping with structural constraints Is proposed, which can provide flexible mapping and
very fast convergence. The feature mapping results are estimated based on similarity
between the distorted pattern and the mapped standard ones, convergence rate and
deviation from the standard patterns. Comiuter simulation demonstrates distortion free
feature extraction and flexible feature mapping.

I INTRODUCTION

Japanese Kanji characters have their structural meaning. They are composed of certain
number of writing strokes. About 3000 characters are Included In the first group of
Japanese Industrial Standard (JIS), which are daily used. Totally, about 6000 characters
are recommended by JIS to be used In real world. They have many similar structures.
Structures themselves are also very complicated. For this reason, handwritten Japanese
Kanji character recognition Is Inherently difficult subject.

Neural network approaches to pattern recognition are classified Into the following
categories. First, the distorted patterns are directly applied to the neural network.
Topological features are extracted through the network. The pattern Is recognized by
matching It with standard patterns (1]. In the second method, some distortion invariant
features are extracted by conventional methods, and these features are applied to
multilayer neural networks, tcalned by supervised learning algorithms [2],[3]. Third
method is a combination model of competitive learning and back-propagation, which Is
suited to large scale character recognition [4]. In any approaches, complicated networks
and a long computing time are required.

In this paper, a new approach to handwritten Japanese Kanji character recognition Is
proposed. It consists of the cellular neural networks, for extracting features of line
segments, and structure Invariant feature mapping.

11 PATTERN RECOGNITION SYSTI04

Figure I shows a block diagram for the proposed Japanese Kanji character recognition
system. A distorted pattern is applied to the I-layer. It Is skeletonized In the S-layer. In
the L-layer, line segments are extracted. Vertical lines, horizontal lines and inclined
lines with ± 45 degrees are extracted In the LI, L2 , L3 and L4 networks, respectively. In
the A-layer, the angle deviation Is detected. In the TR-layer, the line segments are traced
starting from the end points. The middle points and the lengths of the line segments are
extracted. Each line segment Is characterized by the above three kinds of features. The
extracted line features are gathered on the F-layer. The networks used above are
developed using cellular neural networks (5],[6].

Comparing the number of the line segments, which are specified with three kinds of
features, appropriate candidate of the standard patterns are selected. The feature
distribution of the standard pattern is mapped onto that of the distorted pattern, while
maintaining topological structure [6],[7]. The mapping result Is estimated based on three
kinds of measures, similarity, convergence rate and deviation from the standard patterns.
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MI LINE SEGMENT EXTRACTION

3.1 L, and L2 Networks
Since the L, network can be replaced by

the L2 network, by exchanging row and

column, the L, network Is only described In Az_ -Laycr

this section.
Network Structure:

Since the network can be regarded as a S-Layer

matrix, a unit, which locates on the ith row

and the jth column, is denoted by u(i.j). -- U - --

Furthermore, the Input and output of u(I,j) /

are expressed by x(i,J) and y(i.J), L-Layr

respectively. Connection weights, used in the A -L, network, are defined as follows: • - 2- :-

s: Self-loop of u(iJ). D2 D4 A-Layer

avk: Bidirectional connection weights between
u(ij) and u(i,j-k). Two units, whose ,M

distance Is k units, are connected by avk.
It is Independent from the coordinate TR-Layer
(i,j), and is determined only by the
distance k.

6: Threshold level. u(i,j) Is activated If its Memor
input Is greater than or equal to 0. F-Laye

The remaining connection weights are zero. Feaur point

Network Dynamics: -- - didte Pa Mi
The L, network state, which is a set of the Modified

unit outputs, is initially set to be the input SOM
pattern. The network changes Its state as
described in the following, resulting into the sim --ardi

equilibrium state. In this sate, only vertical Estimation Iteration result
line segments with the specified minimum Distor°tion

length can remain.x(i,j) and y(ij) are denoted by x,.i.n) and Fig.1 Block diagram of Japanese Kanji

y 1, j(n), respectively, In order to descries the character recognition system.
state transition here.

y,. J(O) 1, u(i,j) Is Included in the input pattern (1)

10, .otherwise
X1. 3(n) = sy,. An-i) + T avk[y,. J-k(n-l) + Y,.J+k(n-l)], n~l (2)

If x,. i(n) k 0, then y. j(n+l)=l (3a)
If x,. j(n) < 0, then y 1. J(n+l)=O (3b)

Conditions for Extracting Line Segments:

Conditions for extracting lines segments, with the minimum length of m-units, are given
in the following.
• Extract line segments, with the minimum length of m-units:

p M-P IX X(i. j) X2 (i, j) X3 (ij)
x,(i.j) = s + Y 2avk + Z aVk 2B. p=Ol. 2 ,.... [(m-l)/2] (4) p=O * P=O 0pO S p=O @

"k-) k -P*1 I 4 I 0 0 I 0
Reject short line segments: o0. 2 0 20

p m-p-2 1 l 1
x2(i,j) = s + £ 2 aVk + S avi, <0, p=Ol.2,..., f(m-2)/2] (5) 00 0 0

k-1 k-P4t
FIg.3 Relations between p and

Reject non-line segments: unit locations. m Is chosen to

p n-p-i be 3. 0 active, 0 inactive.

X3 (I,J) = Z 2avk + £ aVk < 0, p=0O,i,....[(m-l)/2] (6)
k-1 k-P+i

In the above equations, [r] Indicates the maximum integer not exceeding r. Figure 2 shows

relations between p and the unit locations. The remaining connection weights are all zero.
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3.2 L3 and L4 Networks
Connection weights hre defined by,

L3 Net bRk: Bidirectional connection weight between u(I,j) and u(i+k,j~k).
L4 Net b~k: Bidirectional connection weight between u~i~j) and u(i-k,j+k).
The input of u(ilj) is expressed by
La Net: x(ij) = sy(i~j) + X bRk[y(l-k,j-k) + y(i+k.J+k)] (7)

k

L4 Net: x(i,J) = sy(lJ) + I bLk[y(l+k.j-k) + y(i-kj+k)] (8)

The same conditions can be derived for s. bRk and bLk as in the L, network.

3.3 Interaction among Li, L2 , L3 and L4 Networks
In L, through L4 networks, if the minimum length is chosen to be relatively long, curved

lines and another Inclined lines cannot be extracted. On the contrary, If the minimum
length Is chosen to be short, many non-line segments are extracted. In order to avoid
such undesirable extractions, multistage extraction and Interaction among the L, through
L4 networks are employed.
Stepl: The vertical and horizontal lines with minimum length of m-unlts are extracted. m is
chosen to be relatively large. The extracted line segments are removed from the original
pattern. The remaining pattern is set on the L, and L2 networks. The line segments with
(m-l)-unit lengths are extracted, using the connection weights, which satisfy Eqs.(4)-(6).
This step is repeated by decreasing the lengths. The extracted line segments are combined
resulting the final vertical and horizontal line segments.
Step2: The inclined line segments (± 45 degrees) with the minimum length of m-units are ex-
tracted. The extracted line segments are removed from the original pattern. By setting
the remaining pattern on the L3 and L4 networks, the same line extraction with (m-l)-unit
lengths Is repeated. This step is repeated by decreasing the lengths. The extracted line
segments are combined resulting the final Inclined line segments.
Step3: If the extracted inclined line segments are completely included in the previous
vertical or horizontal line segments, then they are removed.

IV ANGLE. MIDDLE POINT AND LENGTH EXTRACTION

4.1 Angle Extraction In A-Layer
Deviation from the standard angles, that is vertical, horizontal and slopes with ± 45

degrees, is detected by using the following cellular neural network. Connection weights,
defined in 3.1 and 3.2, are determined as follows:

A, Net (vertical): bR, = -1, bL, = 1 (9a)
A2 Net (horizontal): bR, = I, bL, =-1 (9b)
A3 Net (+45 degrees): av, = 1. am, = -1 (9c)
A4 Net (-45 degrees): av, = -1 aH, = 1 (9d)

The unit input is expressed as follows:

x(i.J) = av,[y(IJ+l) + y(i,J-l)I + aml[y(i+l.j) + y(i-l,j)]
+ bR,[y(i+lJ.Jl) + y(i-l.J-l)] + bL,[Y(I+l.J-l) + y(i-l.J+l)] (10)

The angle deviation is given by
1

D (=-1 lx(i,J), I,J QL (11)
2(Nu-l)

Nu Is the number of units Included In the line segments. Q L means a set of coordinates of
the units. D represents the deviation from the standard angles. The standard angles are
also normalized as follows:

Slope (-45 degrees): -1
Hforizontal line: 0
Slope (+45 degrees): I
Vertical line: 2

Letting the normalized angle be Ao, the whole angle A Is calculated as follows:

A = ((+A 0  D ))4, (( n ))N means n modulo N. (12)
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4.2 Middle Point and Length Extraction in TR-Laycr

The middle point and the length of the line segment are obtained by tracing the line

segments, starting from the end points. The connection weights are determincd as follows:

w(ij) Wu-r, i~j (13)
0, iAj

av, i aHI, bR, = bL., - 1 (14)

w(i,j) is connection weight from the ith unit in L-layer to the jth unit in TR-layer. The
input of u(i,J) Is expressed by

x(i,j) = WLTyF(i,J) + avi[y(l,J+l)+y(1,J-1)] + ai ,[y(i+l,J)+y(i-l,J)]

+ bR1[y(i+l,j+1)+y(i-lJ-l)] + bL,[(y(i1,j-l)+y(i-Ij+I)] (15)

yp(i,j) and y(1.j) are the outputs of u(IJ) In the L-layer and the TR-layer, respectively.
At the first network transition, the state of u(lj) in the TR-layer Is determined by

y(i j) =j 1. x(i.j)_ 0 (10)
10, otherwise

At the following steps, the output Is determined by

If x(i,j) 0, then y(i,J) = x(i,j) - 0 + 2 (17)

By setting 0 =WL,-rTl, the end points of the line segment are activated at the first step. In
the following steps, the neighborhood of the activated units can be successively
activated.

The middle point can be detected as the colliding point of two traces. Furthermore, the
length of the line segment can be obtained as a sum of the outputs of the colliding units.
The length Is normalized by the total number of units Included In the original pattern.

V PATTERN RECOGNITION BY FEATURE MAPPING

5.1 Mental Distortion
In the proposed method, standard pattern Is mapped onto the distorted version, while

maintaining topological structure. Because, the former is familiar to the human brain.

Therefore, this mapping process can be regarded as mental distortion In human brain.

5.2 Candidate of Standard Patterns
Line segment features of standard patterns are extracted, and are stored in the memo-

ry. Candidate of the standard patterns are selected by comparing the number of the line
segments characterized with three kinds of features.

5.3 Structure Invariant Feature Mapping
Kohonen's self-organizing map [8] is Improved as follows:

(l)Feature points of the standard pattern are mapped onto those of the distorted pattern.
(2)Featurc points are mapped onto the corresponding feature points.
(3)Feature points are selected In the variable ring shape region, In order to make it easy

to find the corresponding feature.
(4)Feature points are selected frjm both patterns, in order to avoid double mapping

and oscillation in the mapp-!ng process.
The proposed feature mappinrg process Is described In the following.
(Stepl) Selecting Feature Points:

The mapping Is carr'cd out on NxN grids. Feature points In both patterns are selected
in ;he 1st outside region, whose coordinates are given by (1,J). (N,j), (1,1), (I.N), i,J=l-N.
(Step2) Selecting Corresponding Feature Point:

When p. is selected first, q,, which satisfies

a 1 Lk-Lm,ý 1 I Ak-At, I <a, a and R8 are weighting factors (18)

is selected as the corresponding feature point. Lk, Ak and Lm, Am are the lengths and an-
gles of p. and q,.. respectively. if several qm satisfy this condition, one of them, locates
closest to Px, Is finally selected.

p, Is shifted toward the selected q,. On the other hand, when q. Is selected first, px.
which satisfies the above conditions, Is selected as the corresponding feature point. In
this case, Pk Is also shifted toward qr.
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(Step3) Neighborhood Constraints:
When pw Is shifted toward q,,, It's neighborhood are also shifted toward the same

direction with shorter distance than that of pk.
(Step4) Narrowing Ring Shape Region:

Feature points are selected In the 2nd outside region, whose coordinates are given by
(2,J), (N-l,J), (1,2) and (i,N-1), i,J=2-N-l. Steps2 and 3 are repeated for all feature points
In this region. After the region reaches the central point, the mapping process returns to
Stepl. The above processes are further repeated until the mapping converges.

5.4 Estimation of Mapping Results
Similarity:

The feature distribution P Is assumed to be changed to P', after the mapping. In order
to estimate similarity between P' and Q. the following error function is employed.

Y J [p'(n),q(m)I 1  (19)
- 1[p'(n),q(m)], + Y[p'(n)] 2 + Y [q(m)]9

[],: The number of pairs of P'k and qrno which are mapped onto.
[]z: The number of p' k, which are not mapped onto the corresponding feature point.
[]3: The numbers of q., onto which any P'k are not mapped.
Therefore, perfect mapping yields S=I, otherwise S< 1.
Convergence Rate:

Feature point mapping from the 1st region to the central region is regarded as one
iteration. A convergence rate is measured by the number of this Iteration.
Variance from Standard Pattern:

Relative deviation between P' and P Is estimated. Let (l,j) and (i',j') be the coordinates
.of elements in P and P', respectively. Average of translation (i.,jm) is given by

Wi I W -1), = T 0(1j) (20)

where NL is the number of the line segments. The relative distortion is estimated by

V, = (L i I ), Vj _ (J'-jj m )2  (21)
Ni- N1..

VI SIMULATION

6.1 Japanese KanJi Characters
Handwritten Japanese Kanji characters have been dealt with. They are expressed using

two-level values and 24x 24 dots. The first group of JIS Kanji characters (2965) are used
for standard patterns.

6.2 Handwritten Kanji Character Recognition
Figure 3 shows an example of a handwritten

distorted pattern, and it's skeletonized
pattern. Figure 4 shows the extracted line
segments in the L-layer. The minimum line

length in the first step Is chosen to be m-3,

and the line extraction Is repeated using
m-l=2. Since some margin is employed for se-

lecting the standard patterns, and
topological structure is not taken Into ac- (a) (b)
count, 16 different KanJI characters are Fig.3 Example of distorted pattern rFj
selected. Among them, rtJ , ruiJ , r ,J r (a) Input pattern

F6J , FIJ and F•J have similar structure (b) Skelctonized pattern.
to that of the distorted pattern.

Figure 5 shows feature point distributions of the standard pattern rti *, and the
distorted version U, and shifting directions.

The three measures, obtained by the feature mapping, are listed In Table 1. Since FJi,
rzij , rai have almost same topological structure, the similarities defined by Eq.(19)

become S=i. Therefore, they cannot be distinguished based only on the similarity.

195



However, their differences are apparen- based on the convergence rates and the
variances. As a result, F;J can be recognized. Since the number of iteration it less
than 20, the mapping process Is very fast.

-----_lStandar SiltltIIla It on r

I-- PatterlnsI- Si Vit Vi Estimation

........ • , , , ........ .. . . . . . ...z .. .. . . . ......

L L2 L3 L4 4
Fig.4 Extracted line segments of distorted FtJ pattern.

. ...- .•- Tabl e 1 Three measures and order of standard patterns,

i 5 ----e-on estimated by feature mapping.

Patterns S Vi Vi Estimation
- - --- " ý10 12- 0tandar 3.ir t 3tra io 1ain e O d r o

7•1.00 15 0.82, 6. 78 2
S1.00 16 6.82, 6.24 3

):1 0. 92 13 10.2, 4.14 4
Fiý- 5 F.eature point rx 0. 92 13 8. 22, 16.0 5
distributions, and

shifting directions. 0.83 11 0. 56, 2.64 6

"VIE CONCLUSIONS

A new approach to handwritten Japanese Kanji character recognition has been proposed.
The ideas behind the proposed are based on line feature extraction by the cellular neural
networks and mental distortion by the structure invariant feature mapping. Computer
simulation using about 3000 Kanji characters has demonstrated. Distorted patterns with
scaling, translation, rotation and general distortion, can be recognized.
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Abstract

The idea of nonlinear and delay-type donning templates which enable to increase essentially the
efficiency of the CNN was described in [1]. This paper is devoted to the image thicking templates which enable

to improve the quality of distored images. Especially it was found that these type of the CNN can be successfully

used in preprocessing of handwritten characters in order to recognize them by the four CCD operators method

[4]. Three various thicking templates are considered (demonstrated) : two examples of nonlinear donning

templates and one delay-type template.

1. Introduction

The cellular neural networks (CNN) are effective tools for image processing due to

their simple operation mode and regular configuration [2,3]. The number of the CNN
applications has been rapidly growing. It was shown that these networks can be efficiently

used for the handwritten character recognition by the connected component detectors (CCD)
method [4]. It is observed that primary images of handwritten characters obtained from the

scanner have irregular noisy contours. This fact may decrease the efficiency of the
recognition by the CCD method.

The contours of figures can be improved (i.e. smoothed, regularized) by thicking.
Three various CNN algorithms of thicking are presented in this paper:

"* nonlinear clonning template I - simple thicking;
"* nonlinear clonning template II - which enables to obtain the figure contour and

additionally thicking by one pixel after logical "OR" operation with the input image;
"* delay-type template which gives efficient smoothing and thicking by local averaging.

0-7803-0875-1/92 3$.00 ©19921EEE 197



2. Thicking clonning templates

2.1. The nonlinear template I for contour thicking may be expressed as follows using the

usual CNN notation:

"I dl][ 1 1]

A= d 5 d B= 1 -1 1 =9 (1)
1d 1 1 1 1

where d=0.5. (Y[k,1]) Y (Y[k,1] Y[i,j]).

Due to this rule the contour of an object can be increased by one cell in all directions, as

shown in Fig. 1. It does not require any special initial and boundary conditions - it is

sufficient to impose -1 at the boundary and to take the image itself as an initial condition.
The operation mode takes only several iterations while simulating on a computer.

(a) (b)

(c) (d)

Fig. 1: Demonstration of the thicking template. (a)(b)(c)(d) Input and output images.
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As can be seen from Fig. 1. the clonning template (1) improves the contours of input
images by smoothing. This rule is characterized by good stability properties.

2.2 The nonlinear donning template U for drawing contours is described below:

[0di 0 4 4 ]

A = 0 dI B -- -30 4 1 = -5 (2)

0dt 0 L44 4

where d, = (Y[k,l]) 2  - 0.5 - (Y[k,l] • Y[i,j]),
d2= -0.5 • (Y[i,j] • Y[k,1]).

This rule enables to draw the contour of a given object in all directions and the
contour is shifted by one, as shown in Fig. 2. The operation mode takes few iterations (or
time costants in analog circuit).It is possible to use this rule many times to obtain multiple
contours of figures.

(a) (b)

(c) (d)

Fig. 2: Demonstration of the drawing contour template. (a)(b)(c)(d) Input and output images

In order to obtain the image thicker by 1 pixel it is necessary to perform the logical
"OR" of the computed contour and the input image. This operation can expressed by:

A- =1 B- =1 I = 1 (3)

The examples of results are illustrated in Fig. 3.
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(a) (b) (c) (d)
Fig. 3: Demonstration of the thicking through drawing contour and logical "OR" with input

image. (a)(b)(c)(d) Output images.

2.3 Delay-type cionning template for improvement of handwritten character image at the
output of a scanner has the following form:

00.25 01
A 0.25 0 0.25 B- 0 1 =0.0tl -- 6

L 0.25 0 (4)

A t = 1 Btl = 0 V = 0.5 t2 = 9

A' =3 B' = 0 V = 1.5

The template improves the quality of the character by noise removing and by
smoothing the irregularities at the border, as presented in Fig. 4. The image itself is used as
the initial condition and all boundary cell states are equal to -1.

(a) (b)

(c) (d)
Fig. 4: Demonstration improving quality of handwritten characters. (a)(b)(c)(d) Input and

output images after once use of template (3).
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This template operates in three steps.

- STEP I : six iterations of the rle determined by A, B and I;

- STEP II : three iterations defined by the operators

A'= A + At" B'= 0 I'=I +p

- STEP III: a sequence of iterations obtained in the following way:

A"= A'+A2 B"= 0 I"=I'+1a

This clonning template may be modified by changing the template parameters: the

delays tI and t2 and current values. The STEP I of the algorithm causes the averaging of the

input image - the contour becomes fuzzy and the networks tends to the grey-scale state. This

effect increases in function of time. The averaging stops by using the STEP II - the network

tends to the stable state -1 (white image) in the whole area of the considered image. Then

the use of the STEP III makes the stable output, thicker than the input and with the smooth

contour. Increasing of the delays ti and t2 amplifies the thicking effect (up to hole-filling),

as can be stated from Fig. 5.

(a) (b) (c) (d)
Fig. 5: Improving quality of handwritten characters. (a) Input image. (b) Output image:

tl =6,t2=9. (c) Output image : tl=8,t2-13. (d) Output image : tl=l,t2=32.

3. Conclusions

Three new donning templates for the CNN are described in this paper. Their aim is

to perform the improvement of noisy image with highly irregular contour by the image

thicking and contour smoothing. These operations cause the regularization of hand-written

character images after scanning and make character recognition more efficient by using, e.g.

the connected component detector method. All presented templates: nonlinear I and II as well

as the double-delay-type template are stable and useful. The simplest is the nonlinear I
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template. The nonlinear II template consists in obtaining the outer contour of the figure and
thicking by the "OR" operation with the input image. The delay-type operation can be
modified by changing its delay parameters. The results of operation of presented templates
are confronted in Fig. 6.

(a) (b) (c) (d)
Fig. 7: Comparision of input and output images after thicking by following templates.

(a) Input hand-written character. (b) Thicking by nonlinear template I. (c) Thicking by
nonlinear template IH. (d) Thicking by delay-type template.
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Abstract

Cellular neural networks (CNNs) are considered here as cellular analog programmable
multidimensional processing arrays with distributed logic and memory. The interconnecting weights
between the neighbouring processing elements are defined by the template values.ln the paper a new
systematic way is presented to find robust templates. Using the new learning algorithm some templates
were found for a CNN based layout design rule checking algorithm. The algorithm has been tested in
our experimental system with real life examples. A typical design rule checking of a 432x164 pixels area
takes 8s computation time on our CNN hardware accelerator board.

1 Introduction

Cellular neural networks [1] (CNNs) are considered here as cellular analog programmable
multidimensional processing arrays with distributed logic and memory [11 ].

The interconnecting weights between the neighbouring processing elements, cells, are defined
by cloning template values. Besides the linear cloning templates, the nonlinear and delay type templates
proved to be substantially widening the applications [3]. A cloning template defines the transformation of
an input- and initial state signal-array (e.g. image) to an output signal-array. Some templates have been
found by a "cut-and-try" method, but recently, systematic template learning algorithms were reported
[5],[7],[10],[13]. The learning Drocess presented here is based on simr)lex optimization method. The
learned temDlates are robust, i.e. they are less sensitive to the changing of the values of their elements.

The layout rul,.; checking of a printed circuit board documentation or a manufactured board is
time consuming. Detection of layout errors requires mostly local geometrical information, hence the task
well suits the CNN paradigm. The typical layout errors on a PCB artwork film or on a manufactured PCB
are as follows: (i) wire width is smaller than a given value, even a wire may be broken, (ii) the Isolation on
the layout is smaller than a given value, even a short circuit may be produced, (iii) the brake of a pad, (Qv)
fleck or pinhole on a wire, and (v) the misalignment of the pads to the holes. A key problem is the
detection of the minimal line width violations. It can be shown that most of the layout error detections can
be transformed to this problem.

Considering the different CNN hardware implementations [2],[6] it can be seen that for large
images (over 100 thousand pixels) the digital multiprocessor add-on-board is the only solution. Our new
CNN-HACM [4] board provides a 1 million cell space at 1.5 ps/cell/iteration speed. Here. a low cost
experimental solution will be shown based on our CNN-HACM hardware accelerator board to solve the
layout design rule checking problem. The most attractive solution is, naturally, the analog VLSI solution.
An IBM add-on-board with a 0.4mm minimal wire width (with 200 dot/inch resolution) can be processed
in 2 parts using our new CNN-HACM accelerator board.

Template learning methods are introduced with novel properties in Section 2. New templates
and subroutines [13] are developed in Section 3 to solve the above basic layout detection problem. Real-
life examples are summarized in Section 4. Finally, in Section 5 the theoretical and the practical
limitations are discussed.

0-7803-0875-1/92 3$.00 01992IEEE 213



2 Learning algorithm for CNN

Template design or learning algorithm for cellular neural networks means a procedure which is
able to find the template for a given operation. The operation is specified by the two input signal arrays
S1 (ij) = vuij and S2 (ij) = vxij(O) and the desired output So(ij) = vyij(y).

Learning algorithms published so far [5],[7],[101,113] are based on a system of inequalities and
by solving them, linear templates are obtained. Consider the state equation in [1 .a]. Assuming that the
equilibrium points of the network are stable, i.e. for t-' dvx ij/dt=O, it follows that

vxji( ) = Aij;kl'Vykl + I Bjj;k1*Vukl + Iij

k1 E Nr(ij) k1 E Nr(ij)

where vxi.(-) is the settled siate. Assuming further that the desired output is binary, i.e. vyij(t) =_±1 for t--=
and setting vyij(-) to the desired output So(iJ), because of [1 .a], we get

Z Aij;kl@Vykl + I Bij;kl"Vukl + Žij >- 1 if Vy1j

k1 E Nr(ij) k1 E Nr(ij)

SAij;kl'vyki + I Bij;kljVukl + lij <- -1 if vyij( )=-I.

k1 E Nr(ij) k1 E Nr(ij)

To assure stability the symmetry of the feedback template A is provided. To gain a more
efficient template the following inequalities can be added to the above system providing a shorter and
possibly monotone transient:

Z Aij;kl*Vykl(O) + X Bij;kl@Vuk1 + Iij -Vxij(O)> 0

k1 E Nr(ij) k1 E Nr(ij)

if vyij(-)=1 and vxij(O)<l,

Z Aj ;kl Vykl(O) + I Bij;klSVuk1 + Zij -vxij(O)<- 0

k1 E Nr(ij) k1 E Nr(ij)

if vyij(=)--1 and vxij(O)>-l.

In [5] relaxation methods were used to find a solution of the system of inequalities. Some
useful templates had been found, but In many cases changing the template elements by a few percent,
the dynamic behaviour of the network changed as well and the template no longer performed the desired
operation. To overcome this difficulty, a different algorithm was proposed [7] which Is discussed In short
here.

A learning aloorithm for aalnlna robust templates

To obtain robust templates, we have to find not only an arbitrary solution of the Inequality
system, but to find an optimal one in the sense of being far Inside the solution domain. The robustness of
a template with respect to changing its elements depends on how far inside the parameter space it is
from the boundaries defined by the inequalities. The greater the distance, the more robust the template,
and the transient gets faster, as well.

To characterize a point in the parameter space a cost function is constructed whose global
minimum is as far as possible from all of the boundaries of the solution domain. Locating the minimum of
the cost function by some optimization method, a template with the desired properties can be gained.

To find this optimum the simplex optimization algorithm has been applied. If the domain of
solutions in the (2r+1)2+1 dimensional parameter space (the number of template elements with
neighbourhood size r) is closed, then the "mass centre point" of the domain should give a robust
template. In that case the cost function is defined as
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cost(T) = I 6(T,Pi)

i

where 5 (T, pi denotes the signed distance between the point in the parameter space corresponding
to the parameter vector (or template) T and the plain defined by the ith inequality. It is easy to see that
this cost function is unimodal, that is, the optimization algorithm finds the global minimum without
difficulty. There is no guarantee, however, that the domain of solutions is closed. In fact, in most cases
the solution domain is open and the optimum lies in the infinity. To overcome this problem and to provide
a controllable robustness for the templates, the following learning method has been used.

1. First, the simplex algorithm, which works with a set of parameter vectors, is initialized with
templates having symmetric feedback A. The algorithm then quarantees that all parameter vectors
remain in the subspace defined by the symmetry constraints.

2. In the first optimization step the simplex algorithm is run to bring all parameter vectors inside
the, possibly open, solution domain. It stops when all the points corresponding to the parameter vectors
are at least c > 0 far from the boundaries.

3. In the second run a different cost function is applied to bring the parameters into the
feasibility range while the condition acquired in step 2 is maintained.

This method gives temp!ates with a prescribed robustness with respect to changing their

parameters. This means that the template elements can be slightly modified without changing the
behaviour of the system. Alteration of the elements has no effect on the operation performed by the
template at least until the absolute sum of the modifications remains under c.

Limitations of the proposed learning algorithm

Learning algorithms based on the above system of inequalities have strict limitations. Only
binary output templates with symmetric feedback can be generated. Besides, no information about the
dynamics of the actual transient is considered. Consequently, templates with local dynamics can be
learned only.

Recently a new learning algorithm [14] based on genetic search was reported. According to
the experiences a broader class of template learning problem can be solved by using this algorithm.

3. The experimental system for PCB layout error detection

The main steps of PCB layout error detection are as follows,

(i) the optical input of the layout (in our experimental system we use a scanner input),

(ii) the transformation of the gray level image of layout to a black and white one,

(iii) perform the different layout error detection algorithms.

3.1 Setting the appropriate parameters of the optical scanner

Using an Epson GT4000 scanner [9], scanning was tested the typical classes of printed circuit
boards and PCB artwork films. The point here is to have such a scanned gray scale area where the
layout figures can easily be identified in the background isolation area. The resolution of the scanning
should be at least 3-4 times finer than the smallest details of the scanned object.

3.2 The black and white image generation

The next step is to find a black and white picture from the gray scale one. Here the average,

the thresholding, or some nonlinear filtering templates can be used.
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3,3 The critical algorithms of the design rule checking of printed circuit board documentation

by using cellular neural networks

A crucial problem of the layout checking means the detection of violations of the minimal line
width and the minimal separation width. The second problem can be transformed to the first one. The
pixels of lines or pads are considered black and the area between them white. If we were able to solve
the problem of minimal line width violation detection on a positive picture then on a negative picture, the
minimal separation violation could be detected by the same method.

The minimal line width violation detection of rectilinear layout

Here a sequence of image transformations will be shown to determine the places where the
line width requirement were not met. The sequence of image transformations in CNN can be done by a
sequence of templates.

The horizontal and the vertical line width checkings are performed separately and the faults are
logically OR-ed. The minimal line width is first supposed to be 2 pixels, and later an algorithm Is shown
for N pixel minimal line width.

The vertical wire case

First, let us suppose that we have 2 pixels wide lines and these lines in some cases are thinner
than 2 pixels. We have to find these places. Using our template learning program (71 with e = 1.0, the
result is as follows.

[-0.11 0.43 -0.11 1 0.19 -0.04 0.19
A= 0.43 0.06 0.43 B= -2.92 2.40 -2.92 I= -4.96

-0.11 0.43 -0.11 0.19 -0.04 0.19

The template finds all pixels which are on a vertical line with one pixel width. Knowing that this
template has been found with c = 1.0 value, the learned template could be rounded as follows:

-0.1 0.4 -0.1 0.2 0.0 0.2
A 1  0.4 0.0 0.4 B 1 -3.0 2.5 -3.0 I - -5.0

-0.1 0.4 -0.1 0.2 0.0 0.2

The horizontal wire case

To detect the errors in horizontal wires, the same template can be used as in the vertical case,
however, the template B has to be rotated by 90 degrees.

The aeneral minimal line width violation detection

The next problem is to find the places where a line is thinner than N pixels. To solve this
problem, we have to find some algorithms containing several templates (CNN subroutines). The
algorithm uses peeling templates which remove pixels from either sides of black objects. The following
template turns white all black pixels having white pixels on their left side:

000 000
A- 0 2 0 B- 3 3 0 1 -5

000 000

Templates for peeling from right side can be generated by rotating the template B above.

The CNN subroutine [13] for finding lines thinner than N pixels in vertical (horizontal) direction
is as follows. Two images are used, namely a temporary "TEMP" and a result "RESULTr.
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- Load the input picture and save it in TEMP
- Find one pixel thin lines and save the result in RESULT
- Repeat N-2 times:

- Load TEMP
- Peel 1 pixel from left (up) or right (down) (best if
alternating)
- Save in TEMP
- Find one pixel thin lines and OR the result in RESULT

Remarks:

(i) This algorithm has to be run twice to find both the horizontal and vertical errors.

(ii) It can be seen that the number of iterations depends on the minimal wire width to be detected.

(iii) The input picture and the initial state are supposed to be equal.

(iv) Here an additional picture has to be used to store the results (RESULT). It is crucial, in view of speed,
how many picture changes are needed and how many additional pictures have to be stored. These are
the parameters which determine the complexity of an analog or a dual algorithm.

After error detection phase the very short (<d) errors should be removed, supposing they are
not layout errors but scanning errors. By the next template the isolated black points are removed.

000 [ 0 0.50
A= 020 B= 0.5 0.5 0.5 1 = 0

000 [ 0 0.50

4. Layout error detection experiences based on nontrivial examples

Experiment 1

A part of an artwork film of a multilayer PCB with 0.254mm minimal separation width was
considered and the places have to be detected and recorded where the separation is smaller then this
given value. The size of the picture was 362*648 pixels. In Figure la and Figure lb the scanned binary
input and the detection the errors of vertical separation can be seen. It took 8s processing time (and an
additional 20s were necessary to load the input picture and the initial states) by using our CNN-HAC (v.
2.0) board [4].

Experiment 2

The gray level input of a part of a manufactured printed circuit board (603x309 pixels) is shown
in Figure 2a. First, a black-and-white picture was generated (see Figure 2b) by using a nonlinear filtering
and the average template. The minimal vertical line width violation (where the line width is smaller then 3
pixels) is detected. The result of the detection is shown in Figure 2c. The algorithm was used and the
processing time with the CNN-HAC board [4] was 10s (an additional 50s were necessary to load the
input and the initial states and to draw the results on the screen).

5. Theoretical and practical limitations

An important question is: in how many parts a real problem can be processed. Its running time
consequence was shown previously. An IBM PC add-on-board with a 0.4mm minimal wire width ( in 200
dot/inch resolution) can be processed in 2 parts by using our new CNN-HACM accelerator board.

With the proposed method the short circuits cannot be detected owing to the fact that it is not
a local error. Even if we could give a node information to a pixel, it needs an additional storage
requirement which can be 8 bits/pixel or more. Only the thin short circuits are detected by the minimal
line width violation algorithm.
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Abstract
We are studying one class of new Cellular Automata (called B-rule in

this paper). We have discovered rule B !-- can he exploited in the design of
Cellular Neural Network (CNN) for ' nary image thinning. In this paper, we
introduce B-rule 132 and tkIi amethod of the binary image thinning with CNN.

Intruduction
Cellular Neural Network (CNN) [1-2] is a class of novel analog

nonlinear circuit which allows real-time signal processing by using only
local interconnections ot neighboring cells. In this paper, we consider a
class of new Cellular Automata (CA) which is called B-rule. We have
discovered that the rule B13 2 can be exploited in the design of CNN for
binary image thinning. In this context, the characteristics of one-
dimensional (l-D) B-rule CA is introduced. Then we discuss the approach
and results of employing these rules to binary image thinning by using
CNN.

The relations between CA and CNN linear cloning templates have
been addressed in [3]. In [4], the relations among CNN with CA and
Systolic Array (SA) have been analyzed. If the operations of the system
are purely logical and involve only a few bits, the classical CA of John Von
Neuman and its recent variants are ideal tools. The thinning algorithms
by using two-dimensional (2-D) CA have been discussed rigorously in [5]
while in [6], the system proposed needs a complex eight-plane approach
of CNN to accomplish. However, the authors in [6] have not mentioned the
methodology to determine the values of the cloning templates. In the
studies of a new class of 1-D CA, we have discovered that rule B13 2 (to be
described later) are useful for the design of CNN for image processing.
Henceforth, we shall refer I-D CA simply as CA.

B-rule Cellular Automata
CA are sufficiently simple to allow detailed mathematical analysis,

while on the other hand, complex enough to exhibit a wide variety of
complicated phenomenon. In a simple case, a CA consists of a line of cells
or sites, each with value of 0 or 1. These values are updated in sequence
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of discrete time steps, according to a definite fixed rule. Denoting the

value of a site at position i in (t+l)th time step by a! 1 , a simple rule gives
its next value as

a[+l = F(a[_1, a,, ai+

Here F is a Boolean function which specifies the rule, a[., a/, af+1 are the
values of the cell itself and the immediately adjacent cells in the tth time
step. Thils rule is called A-rule CA in this paper. Thus, there are
altogether 28 = 256 possible distinct CA rules in one-dimension CA with
three variables. S. Wolfram [7] has studied the special properties of this
rules and has discovered that there exists only 32 "legal" rules. Following
[7], a rule is said to be "legal" if it is (i) reflection symmetric, and (ii) if
given an initial state of all Os, the state remains unchanged. Now,
consider a class of CA with the following activation rule:

6t,! = ( ,I(a II,a[-1, aI+j).

Here 0P is a Boolean function which specifies the characteristics of the rule.
The value of a/+I depends on the values of a'il,aj+l (at the tth time step)

and at,-1 (at the (t-1)th time step). This rule is called B-rule CA in this
paper. Thus A-rule is equivalent to the lst-order partial differential
equations while B-rule the 2nd-order partial differential equations
relating the input state variables. Likewise, we have discovered 32
"legal" rules for B-rule CA while the evolution of the patterns can further
be partitioned to 5 classes as in Table 1. Moreover, only class 2 has the
potential to be applied to image processing. In particular, rule B1 3 2 can
be applied to binary image thinning. Fig. I shows some examples of the
evolution of rule B132 with different initial conditions.

Binary Thinning with B-rule CA
Thinning has found a wide application in the field of character

recognition in which, prior to encoding of a character, it is necessary to
reduce the original image to simple lines [5]. Thinning is actually much
more difficult than it looks, basically, two tasks must be implemented: (i)
peeling the thick pixels off, and (ii) stopping the peeling process when the
pixel size is exactly one or two. Our proposed algorithm B-rule CA can
implement the above two tasks at the same time.

In this paper, we transform the image thinning process from a 2-D
problem into two l-D CA problems (vertical:Y and horizontal:X). In
accordance with the evolulion characteristics of B13 2 CA, any odd number
of 'Is present at the initial state leads to one-pixel thick stable state. Fig.
2 shows the schematic of the partitioned network. 2-D CA is separated
into two 1-D CAs nominated with X-CA and Y-CA. To ensure the correct
operations for the cells on the boundary, an "zero boundary condition" is
assumed.

Fig. 3 shows some simulation results of a 40x40 pixels printed
character. In Fig. 3a, the original character is presented, where the
outputs by using Y-CA and X-CA are respectively, shown in Fig. 3b and 3c.
Finally, combining the results at X and Y directions give Fig. 3d. Fig. 4 is
the simulation results of a hand written Chinese character.

211



Implementation of Thinning Processor with CNN
B1 3 2 CA uses the following Boolean function:

ac+l = P (a-,,_a1, a,!+,) =a 1-* .(a1®a:),
where 0 is the Equivalence operator. The schematic of the above Boolean
function implemented by logic gates is shown in Fig. 5. It is known that
CNN can finish logical operations like AND, OR and NOT [8]. Thus, the
above Boolean function can also be implemented by using CNN cloning
templates. Fig. 6 shows the whole schematic of our proposed image
thinning processor. The X-CA and Y-CA are basically time-discrete CNN
[9].

To demonstrate the performance of our binary image thinning
processor. Fig. 7 shows the simulation results of two hand written English
characters "a" and "y" in a 40x40 pixels plane. In fact the size of a convex
polygon in the X and Y directions can also be determined by our thinning
processor. Fig. 8 shows some examples of determining the sizes of convex
polygons.

By separating the 2-D thinning process with two l-D thinning processor,
the whole image processing is speed up. In general, the convergent steps
are less than n for a nxn pixels plane. However, there are some minor
disadvantages in our processor: (i) two layers of processing elements are
needed, and (ii) the final thinning outcome may be discontinueu.
However, the simplicity of implementation and higher processing speed
makes it a vital component for image processing. Our research for the
properties of B-rule CA and its application to image processing is only the
first step. Another example of applying CA rules to the design of CNN for
image processing like edge detection and connected component detector
can also be found in [10]. The relations between CA and CNN and their
potential capability of combining together for image processing worth
further studying.

Conclusions
A class of new CA (B-rule) is ideal tool for the design of CNN for

binary image processing (like image thinning). The potential capacity of
our approach worth further studying.
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Class B-rules
1 0, 32, 72, 127, It60
2 14, 36, 76, 104, 108, 132, 164, 200,

204, 232, 236
3 18, 22, 50, 54, 146
4 150,178,182,218,250,254
5 190, 94, 122, 126

Table 1
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1. Abstract

Computer Integrated Manufacturing (CIM) Systems having determininp role in the modem

industry. These systems contain essentially two different equipments for transporting materials

between workstations:

- conveyors can be used if the path of transportation is fixed and known in advance, or

- if the path of the transportation may change or there are various tasks to be solved along

the path, the use of Automatic Guided Vehicles (AGV) is strongly recommended.

The path control of an AGV in CIM systems is generally solved either by following an

inductive wire or by determining its position and orientation from signals provided by transmitters

mounted at some characteristic points of the workshop. Both of these basic methods have their

advantages and drawbacks.

In this paper a new method will be proposed for path-control, which combine the flexibility

and easy installation of optical methods with simplicity and robustness of the inductive method.

Using a new computing paradigm, the Cellular Neural Network (CNN) [1],[2] and a related

device [3], the VLSI CNN chip, a very high speed solution can be achieved, that is less expensive

than the conventional methods - keeping their advantages. This AGV control comply with the

requirements of CIM systems. Further advantages of the proposed system are as follows: fault

tolerance and ability to give Instructions along the path, and the use of a simple local control.

2. The proposed new method

In this report the possibility and feasibility of using CNNs for control of AGV is investigated.

The schematics of the control unit cw.n be seen in Fig. 1. The input sensory array may work either

in the visible electromagnetic range or, eventually, in the ultraviolet or infrared spectral range. In

this application, the path determined by series of control patterns and the AGV has to trace

these, and deduce the motion speed and direction. The input picture obtained is directly

forwarded to the CNN unit. The CNN unit has to solve the pre-processing (filtering, noise-
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reduction, pattern restoration, etc.) of the detected picture and the analysis of the shape, size,

and orientation of control patterns. A simple logic makes the desired control signal from the

result of analysis. This method is new in control, because CNN was never used in this field. The

results of using CNN for character and pattern recognition are applied combining with optical

feedback.

The main advantage of this method:

- using analog VLSI and integrated device (see Part 5) a real time control available;

- it's more flexible and less expensive than conventional methods;

- easy installation and variability;

- fault tolerance due to robustness of CNN and optical detection;

- improvements can be made easily due to the wide application of CNN (see Part 5).

The control hardware is less complex compared to conventional methods.

3. Determination and analysis of control pattern

For the proposed method a control pattern had to be designed, which meets the foiloving

conditions:

- it doesn't contain small parts, it is strongly fault tolerant and should contrast with the

background;

- the desired direction can be determined from the induvidual pattern;

- it is symmetric so that the path can be followed there and back.

Keeping in mind these conditions, the elementary control pattern has been choosen as

depicted in Fig.2., and its horizcntal projection represents the desired direction. This pattern is

contiguous therefore it can be filtered easily. The horizontal projection can be calculated by the

well known CCD function [9]. The pattern has three main parameters : a, p, and (*. They define

the figure unambiguously. The absolute size of the pattern (parameter a) can be set according to

the size of the visual field of the detector. The horizontal projection of the pattern is determined

by the length of its short and long diameter when the pattern is rotated in the sensory field. The

tangent of the desired path direction Is represented by the position, when the two diameter's

horizontal projections are equal, so the AGV has to turn on the right when the projection is

shorter, and on the left when it is longer.

The length of the projectic., :

h(4q)= maxx sin(+/+p), y.sin(4+r)}

where q7 is the rotation acording to the direction to be followed, and it can be in the intervall

[-u, 900-p] -,x can be computed from the parameters A and f. Using the pattern described above

and it's horizontal projection, the inverse of the last function can be used to determine the

orientation with respect to the tangent of the desired path (Fig.3.).
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4. Experiments

To investigate the proposed method three different experiments have been carried out in

order.

4.1 Experiment 1.

The goal of this experiment is to prove that the control pattern can be detected and

processed in noisy background. and verify that the information can be decoded from the

detected picture. According to the principles stated above as well as to practical considerations,

the main parameters of the control pattern have been chosen to:

a=5.25 cm, P =41.880 , r=57.11'.

A series of control patterns has been scanned by means of a camera. An individual control

pattern has been cut out from the stream and digitized with a frame grabber (Fig.4.). The noisy

image of resolution 44x44 has been fed into a CNN program package [8]. The simulator

computed and displayed the transient of the CNN at discrete time-intervalls. After the transient
has settled down, the steady state response of the CNN remains on the screen. In reality, using

analog VLSI realization of CNN, this transient settles down in a few microseconds. For filtering

and CCD function the following well known templates were used consecutively [1 .bj [9]:

filtering: Fo00125.5 2]
A= 0 2 0A B= 25 2 .2 5 I=2;

0 25 .25 .2

CCD: A= 2- B=.10 0 1=0;

L 2OG] LOGO];0 . 0 00

The simulation results clearly shows that the control pattern can be succesfully filtered and

restored from a noisy background (Fig.5.). The projection length computed by the CNN simulator

and displayed at the right side of the output picture (Fig.6.) is proportional to the angle of rotation

needed to follow the path.

4.2 Experiment 2.

The main goal of this experiment was to investigate whether the method can be applied for

controlling a real robot or not. The schematics of the experimental arrangement can be seen, in

Fig.7. The camera scan a control pattern representing a part of the path to be followed. The

picture is fed into a digitizer and the digitized picture is processed by an IBM-AT compatible

computer. A special add-on-board [12] is used for the simulation of a CNN - it computes the

result faster than the software simulator applied In experiment 1. The result of which is the angle

calculated from the horizontal projection of the scanned pattern is fed into the control of a

SCARA type robot, and the gripper of the robot moving along an arch required, and represented
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by the scanned pattern. If the camera mounted directly at the gripper, this experimental

arrangement can be used for teaching-in as well.

4.3 Experiment 3.

A software simulator program has been developed to test the proposed AGV control. On
the screen the simulator shows on the screen the patterns indicating the desired path, the
simulated image seen by a camera attached to the vehicle, yand the path wandered by the AGV.

Using this simulator the effect of different parameters (e.g. acceleration of the vehicle, fine
tracking, etc.) can be tested along any path given.

5. Application, further improvements

The VLSI and optical realization of CNNs are under extensive research [7][10][11]. The

advantage of the presented method is that all the necessary electronic units - exept for power

electric parts - can be integrated into one single VLSI chip. The chip would consists of two CNN
layers performing image restoration (filtering, etc.) and pattern recognition and interpretation

(CCD). To facilitate additional functions described below a CNN layer with programable

templates is recommended. Integrating an additional sensory array in CNNs is already the

subject of major research. Further simple logical control u i',. may be attached to the design as
well, to obtain a dual-computing intelligent sensory array.

One additional improvement to the method may be the 'fine tracking'. In the proposed
method significant rotational deviations (q > apx. 1 - depending on resolution of sensory array

and the CNN) can be corrected easily. However, especially along a long straight path, the
necessity of fine tracking may be demanded. A signal for fine tracking can be obtained from the

analysis of the bottom line of the CNN image after filtering: any little part of a control pattern

detected in the *n" pixel-wide left/right margin would generate an appropriate control signal.

Besides the proposed method and device with additional CNN functions - e.g. character
recognition - can be applied for interpreting other patterns placed among path-control patterns.

In this way the AGV or the robot might recive instructions to perform various tasks like "stop for
'n' seconds", "do something", "act according to the environment", "determine the control

strategy', etc. For example, the control pattern may be combined with vertical stripes, that don't
influence the orientation and the horizontal projection of the pattern. The number of stripes may

encode different instructions, and can be interpreted using vertical CCD. Further investigations

are needed concerning the fault tolerance and robustness of such "enhanced" patterns.
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Abstract

The random-dot stere~ogram codin^g 3D information in its internal correlation is for probing
human stereopsis. We report dual CNN algorithms that can reveal 3D surfaces coded in
stereograms. The concept of difference srereogram is introduced and used for coding
smooth surfaces. Its importance is due to the fact that difference stereograms of real
objects can be created in an optical environment using projector and camera.

INTRODUCTION

An interesting question about the human visual system is whether we identify an object before

we put it in its proper perspective, or whether there exists a mechanism - the Cyclopean eye - in the

visual cortex, that can perceive "pure" depth based merely on the correlation and parallax of the left and

right retinal images. Using random-dot stereograms [4] almost anyone can try and testify to oneself the

existence of the Cyclopean mechanism.

The random-dot stereogram (RDS) is a two-dimensional, seemingly random pattern consisting

of pairwise horizontally correlating internal segments. Shifting a RDS horizontally upon itself, correlating

(identical) areas will overlap again and again. Viewing properly an RDS devoid of any (monocularly)

observable cue, the Cyclopean eye will find the correlating areas and *see" them in different perspective

depths, depending on their horizontal distance on the stereogram.

In Section 1, methods of creating different types of RDS's - stereo pairs, auto-stereograms and

difference stereograms - are discussed, laying stress upon the internal structure of stereograms.

In Sections 2 and 3, dual CNN algorithms that can find the perspective hidden in stereograms,

are dealt with.

In Section 4, an optical set-up with projector and camera, to produce difference stereograms of

real objects is outlined. Potentially, if connected to a dual CNN hardware it can detect 3D depth

variations in its scope.

1. DIFFERENT TYPES OF RANDOM-DOT STEREOGRAMS

The RDS is a visually perceptible rectangular pattern printed on paper or displayed on a screen,

conveying 3D depth information coded in its internal correlation. Its mathematical representation, which

for simplicity we also call RDS, is a two-variable function g(xy) coding a depth pattern represented by

the s(uv) surface function. In visualization the g(xy) values are converted into different visual attributes

as colour, brightness or texture.

In RDS's, depth is transformed into correlation, which is defined as follows:

g at (xcy) and (xc+dy) is fully correlated, if g(xy)=g(x+dy) for xc_<xc+l, where I is a suitable

correlation length. (For partial correlation the equality need not hold uniformly over the total correlation

length.)
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On its either - say left - side, the RDS contains a rectangular area with no correlation inside.

Almost all the rest of RDS is composed of patches that are copies of some other areas to the left of

them. The copy mechanism ensures internal correlation in the above sense. The position of areas to be

copied is determined in accordance with the depth pattern to be coded.

The different types of RDSs are defined by the following formulae:

Let x0 and YD respectively be the horizontal and vertical dimensions of the RDS, and r(xy) an internally

uncorrelated pattern for OSx<xD and O_<y<yD; and let xp be the width of the left uncorrelated area.

We define the S(u.v) partial slope function of the surface in the horizontal direction as the limit of

(s(u +D,v)-s(uv))/D with D approching 0. We also introduce a c(s) copy-source-selector function to be

defined later, according to the different types of RDSs.

Then for 0O<y<YD, g(x,y) = r(x,y) if X<xp,
g(x,y) = g(c(s(x-xpy)),y) if xýxp and S(x-xpy) < 1,

g(x,y) = r(x,y) if x>_Xp and S(x-xp, y) >_ 1.

All the quantities above, i.e. coordinates, RDS and depth values can be either real or integer

values. The width xp sets constraints upon the dynamics of depth variations for the sake of a meaningful

resulting stereogram.

If xD=2*xp, we obtain a random-dot stereopair, with either half uncorrelated in itself. For visual

inspection its halves can be separated and projected onto the left and right retinae.

If xD is some multiple of xp, we obtain an auto-stereogram [5], that can be inspected without any

special device, simply fixating behind or before the plane of the RDS. The two fixation positions give

reverse depth perception with respect to each other. Fig. 2 shows the auto-stereogram of the step-
pyramid seen in Fig. 1.

For stereopairs and auto-stereograms the copy-source-selector function is the following:

C(S) =X-Xp+S.

Using c(s)=(x-xp+s) mod Xp as the copy-source-selector function leads to difference

stereograms. The difference stereogram is for coding the changes in surface depth, instead of the depth

itself. It has two distinct advantages from the aspect of depth coding. One is the reduced requirement

for width xp due to the fact that changes of depth on surfaces are usually smaller than the absolute

depth. The other is that difference stereograms can be produced by simple optical devices too, as will

be seen later.

2. DUAL CNN ALGORITHM TO EXTRACT DEPTH FROM RDS'S

When perceiving depth, the binocular fusion mechanism of the human visual system picks out

fields correlating in the two retinal images. Correlation is tested by overlapping the retinal images at

different relative shifts. Based on an entropy-like measure - called neurontropy [6] - maximum

correlating areas together with their relative shifts which are directly proportional to the depth of

corresponding areas on the coded surface, are extracted.

The function of this neural mechanism can be broken into steps realizable in the framework of

the Dual CNN paradigm [2), which contains logic operations in addition to the analog CNN ones. Binary

(say black on white) random-dot stereograms coding surfaces that are discretized in all three

dimensions, can be processed in the dual CNN framework.
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The dual CNN algorithm can find the surface steps in depth, one after the other, in successive

phases. Each phase results in the image of surface segments, the fragments of the whole surface that

lie in the depth layer just investigated. Since in the dual CNN framework [3] an external control is

supposed to exist, the value of depth just investigated is always known. Combining the results of

successive phases, yields also the level line structure of the whole surface.

In the following outline of the algorithm, the RDS is split into left and right images. Both Images

and the results as well, are x 0 -xp wide, the left image being the left part of the RDS and the right one its

right part of the same width.

The N-th phase of the algorithm consists of the following steps:

Step 1.: We shift the right image by one pixel to the left and replace it with the result. Depending on the

dual CNN device used shifting can be performed in two different ways. If the right image can always be

stored inside the dual CNN - e.g. in its logic register, then a simple template, having only one non-zero

entry, B23= 1, will do the shift. However, if the right image is stored in external memory, loading it into

the CNN from gradually increasing start addresses will substitute for the shift.

Step 2.: The task to find in the left and right image, sufficiently large correlating areas having the same

pattern, involves the following steps.

Step 2/a.: We perform a logical equivalence operation that by making pixel level correlations, will

immediately reveal to an onlooker, the areas being searched for. The image obtained is

contiguously black on correlating areas and shows random black and white noise pattern

elsewhere.

Step 2/b.: To demarcate correlating areas from noise by CNN, we introduce the next simple criterion:

the black pixels having no white neighbours (most probably) belong to correlating areas. Using

the edge [7] template, that inverts the internal pixels in black areas, we can find just those

pixels that fulfil the criterion.

Step 2/c.: The final step in finding correlating areas is the removal of the noisy pattern. Combining by

logical or operation, the result of edge (Step 2/b) and the inverted result of logical equivalence

(Step 2/a) will yield the white image of the N-th layer of the coded surface, on a black

background.

The logical inversion and logical or operations can be performed consecutively by the logic

part of dual CNN. Equivalently, a composite inverse-or operation can be defined and performed

using the (A2 2 = 1, B22=-1, 1= 1) analog template.

The success of this noise removal step is highly dependent on the local randomness of RDS, or

- conversely - on the adequacy of the demarcation criterion above. According to experience,

small error patches may remain in the results. Applving a small positive value in the feedback

off-center positions of the inverse-or template can improve noise removal by filtering out

isolated errors or even one pixel wide stubs, depending on the value applied.

Step 3.: Starting in the first phase with an "empty" black image, the surface layers found in succession

can be aggregated by logical and operation to produce the level line structure of the surface coded.

Essentially, the succession of logical ands cuts and pastes those edges that were found in the

demarcation step (2/b). In addition, it has a noise filtering side effect In the sense that any errors that lie

entirely Inside areas on other depth layers (before or behind in depth) will disappear. On the other hand,

errors that cross surface edges will locally corrupt the level line result. Fig. 3 shows the level lines of the

step-pyramid seen in Fig. 1.



3. THE DIFFERENCE RDS AND ITS USE WITH REGULAR DOT PATTERN

Producing a difference RDS effectively results in the storage of the difference between the depth

of each fragment and another fragment, a distance xp to the left. In other words, the difference RDS of a

surface is the auto-stereogram of the "difference" surface, that can be produced simply if we divide the

original surface into xp wide vertical bands and - keeping the leftmost band unchanged - reduce the

depth of each fragment by the depth of the corresponding fragment in the adjacent band to the left.

Using a small enough Xp with respect to the minimum horizontal distance of unit depth changes, yields

a three-level (-1,0, + 1) difference surface. The surface of only 2 bit dynamics can be coded with small xp
and vice versa, that allows fine spatial resolution. Fig. 4-a and Fig. 4-b show the difference surfaces of

the 76 pixel wide step-pyramid, for xp =2 and xp = 12, respectively.

From the aspect of processing RDS's with a CNN, the difference RDS, due to its narrow

correlation band, is fundamentally different from the other types of RDS's. The global correlation
property of those is transformed into a local one of difference RDS's, that can be detected in a simple

CNN window of neighbourhood 2 or 3. By that way, both flat areas and ascending or descending

slopes of the coded surface, can be extracted in respective, single CNN steps directly from the RDS.

In case of narrow band difference RDSs the randomness of the pattern looses its importance.

Just the knowledge of pattern structure may contribute to the reconstruction of the coded surface. Let

us consider a discretized surface that is "smooth" with respect to the pattern density. (Smoothness

means, that the depth difference of neighbouring pixels are at most 1, and none of the 2 by 2 pixel areas

form a saddle.) Let us produce a narrow band difference stereogram of xp=4, using a regular checker

pattern of squares of 2 pixel long edges (Fig. 5). Smooth surfaces coded in checker pattern can be fully
reconstructed by a dual CNN algorithm with 22 analog templates of neighbourhood 1, in 3*3 window,

as follows:

Step 1: Find vertical edges where the surface is ascending from left to right

Step 2: Find vertical edges where the surface is descending from left to right

Step 3: Fird all the horizontal edges

Step 4: Using the "smooth surface" property and the already known sort of vertical edges, identify the

downward descending and downward ascending horizontal edges, respectively.

Result 1: The union of edges found gives the level lines of the surface (Fig. 6)

Step 5: Propagating the shadow of ascending/descending edges until it reaches a

descending/ascending edge gives the ascending/descending slopes both in horizontal and
vertical direction.

Step 6: The intersection of ascending and descending slopes gives the row-wise/column-wise local
maxima/minima, in other words the vertical/horizontal ridges/valleys of the surface.

Step 7: Calculate the intersection of vertical and horizontal ridges/valleys. Erase those parts of the

result which are not bordered by some closed level line loop exactly.

Result 2: Result of Step 7 yields the local maxima/minima (peaks/hollows) of the surface.

Result 3: Using modified CCD to propagate ascending/descending edges until reaching a

descending/ascending edge, the height/depth of local maxima/minima can be measured, from

the direction of propagation (Fig. 7).
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4. THE CREATION OF DIFFERENCE RDS WITH OPTICAL MEANS

Aside from its inevitable importance in vision research, up until this point to produce and probe

RDS may have seemed an enjoyable and aesthetic play, devoid of any significance from the

engineering point of view. However, in principle, diffeience RDS's of real objects can be produced

directly by optical means. Moreover, research of optical CNN devices is reportedly under way [81, that
together with the possibility of making continuous, real time difference RDSs of surrounding objects

may lead to a "stereoscopic" robot eye.

Let us consider a projector and a camera side by side at the same height in front of a white wall.

Let us project perpendicularly onto the wall a horizontally periodic random-dot (or checker) pattern, i.e.

the RDS of a single plane, from such a distance that the parallax over the projection area be negligible.

The camera - from beside the projector - will see the whole area at a specific angle, that depends on its

distance from the projector, and is the same for the whole area. In fact, the camera will see the RDS, or

what is the same in this case, the difference RDS of a single plane.

Let us place some angular objects in front of the wall in such a way, that their surfaces be either

parallel with or perpendicular to the wall. From the projectc. no change in the projected pattern can be

noticed. However, from the camera, definite horizontal shifts of pattern segments that now fall on the

inserted objects, can be detected. The resulting view from the camera is the difference RDS of the

whole arrangement, except for the images of those surfaces, which are perpendicular to the wall. They

go "empty" in the optical method and would be filled with an uncorrelated pattern in the computer

algorithm. A camera image of objects in Fig. 8-a is shown in Fig. 8-b. The amount of horizontal shift is
dete,-mined by the change in depth and the camera angle. We consider depth resolution to be that

change in depth, which causes one pixel horizontal shift in the camera image. For a given pixel size, the

depth resolution can be adjusted by the camera angle.

Presumably, using electronically controlled devices, the surface in front of the above set-up, can

be scanned row-wise by a flying window and processed in real time by a tiny CNN array. Moreover, In a

feedback loop, the resolution and the size of the flying window can be adjusted adaptively to the

extracted local features of the surface.
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Abstract

This paper describes a flexible test set that allows PC-controlled analog and digital mea-
surements of a test object. The concept is modularly structured and enables an individual
constellation depending on the testing object such as a CNN chip. Analog and digital signals
can be transferred to and from the object. The communication to the PC is realized via a
standard interface. For the PC, a test program language (TPL) has been developed, which
is easy to handle and allows a flexible and completely automatic testing of a chip. The re-
sults of the measurement (e.g., dc characteristics) can be graphically visualized. For dynamic
measurements the bottle neck consists in the data transfer to the PC and the processing of
the testprogram interpreter. To overcome this problem special hardware modules have been
developed, which allow a cyclic or linear output of analog and digital signals up to 10 MHz.
Their core consists of a FIFO, which is preloaded before the processing. The output rate is
controlled by a clock and different modules are synchronized via trigger signals.

1 Introduction

As commercial chip testers are very expensive, the necessity to develop a economic test set for
the test of the first DTCNN chip [1] was given. The idea was to built up a system that is not
fixed to a special structure of the test object [2]. It was designed with respect to

* a simple measurement by PC with a minimal number of additional wire connections

* a flexible and expandable structure in hardware and software

• an automatic DC characteristic measurement.

* a dynamic testing up to 10MHz.

• a software with an interface to C-routines.

This has been achieved by a modular structure, where the test set consists of a number of single
modules, which communicate with the PC via a standard periphery bus by the I/O card [3], [4].
Each module has an identification address and a status register. Thus the operation of multiple
modules of the same type is possible. They are connected by a port or a BNC connector to the
test object (e.g., a CNN chip), which is plugged on a connection card. The advantage of this
concept is that only the connection card has to be rebuilt for a new chip. The required modules

0-7803-0875-1/92 3$.00 019921EEE

228



are simply plugged on the ports of a bus card. For additional requirements, new modules can
be developed, if the same bus protocol is used.

Closely related to the flexible hardware structure, the software has to support this concept in
flexible and expandable routines. It is based on the assignment of logical signal names to hard-
ware addresses. A hardware configuration list allows the user to operate only with logical signal
names. Each signal is uniquely assigned to a channel on a specified module So, a configuration
table has to be created at first for each test object, which also fixes the required types and
numbers of modules.

2 Hardware Structure

2.1 Hardwai- Concept
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4MHz, 8 common clock lines, 8 trigger lines and power supplies. The external clocks are used for
controlling the measurement of dynamic events. The modules can be synchronized with respect
to rising or falling edges of a clock and are activated by a trigger impulse on a trigger line. This
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guarantees correct timing and interaction of multiple modules. Depending on the given task the
types are chosen and plugged into the slots of the system bus. The modules can be categorized
as follows:

"* static modules writing (reading) digital and analog data to (from) the test object.

"* dynamic modules writing (reading) digital or analog data to (from) the test object.

"* control modules controlling the system and the synchronisation of dynamic functions.

The system is able to address 32 different modules and 64 cards of the same type. The test
object, which was here the fabricated DTCNN chip [5], is placed on an own routing board and
connected to the inputs and outputs of the device.

2.2 Realisation of the Hardware

The different modules are now described in detail:

Static Functions

Digital Out: This module writes 16 binary outputs to the test object. They are transferred
from the PC and stored in a register.

Analog Out: This module writes 2 analog output channels within a range between OV and 5V
to the test object. They are transferred binary with 8 bits for each channel from the PC

and are stored in a register. Digital data are transformed into analog ones by two 8 bit
D/A converters having a resolution of 18 mV.

Digital In: This module reads 16 binary signals from the test object, which are transferred to
the PC.

Analog In: This module has 16 analog input channels, which can be read between OV and 5V.
Two of them are selected via 8-channel multiplexers and. The analog signals are applied
to 8 bit A/D converters and transferred to the PC.

Dynamic Functions

Digital Out Stack: This module writes 16 binary outputs to the test object, which are loaded
by the PC. In contrast to the Digital Out module, the values are preliminary stored in
a stack (2048 x 16 bit). Synchronized to a trigger signal, the module starts to issue the

data with a rate up to 10 MHz. The trigger signal is selected out of the 8 trigger lines, the
output rate is chosen out of the 8 common clock lines. Three different operating modes,
namely the single, cyclic, and static mode, do exist. The data block with up to 2048 values
can be issued once or cyclic, where the stack is read out periodically. In the static mode it
works like the Digital Out module.

Analog Out Stack: This module writes 2 analog output channels within a range between OV
and 5V to the test object, which have been written by the PC into a stack (2048 x 16 bit).
It works in the same way like the Digital Out Stack, only the binary data are converted

by two fast 8 bit D/A converters.
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Digital In _"._.ck: This module starts synchronized with a trigger signal reading 16 binary
inputs from the test object with a speed rate up to 10 MHz. The trigger signal can be
selected out of the 8 trigger lines, the processing speed can be choosen out of the 8 common
clock lines. The input data are stored in a stack (2048 x 16 bit) and are transferred to the
PC after the reading operation. The status empty, half full and full can be checked by the
PC. If the stack is full or if the first value is read, further input data will be ignored.

Clock Module: This module selects two of the 8 common clock lines and issues a dual phase
clock to the test object. The output clock can be switched off and on. It also allows an
activation synchronized with the selected trigger signal that begins with the low or the
high edge of the chosen dock.

Control Functions

Trigger Module: This module issues the trigger signal (250 ns low impulse) for synchroniza-
tion. It is provided after a low or a high edge, respectively, on the specified clock line. The
reaction can be delayed up to 128 ps in steps of 250 ns.

Reset Module: This module generates a system reset to force a defined state of all modules
connected to the bus and to set all outputs to OV. This is obtained by a power on reset, a
software reset or a reset buttoa. It also provides the inputs for the common dock lines.

3 Software Structure

To support the hardware a special test program language TPL has been developed. Its concept
is illustrated in Fig. 2.

It can be considered as an interpreter, which processes the statements of the test program step by
step. Before the interpreter becomes active, a compiler checks for syntax errors and substitutes
the signal names by the real hardware addresses. Every TPL program consists of two parts. The
first one defines the connected modules and gives the reference between the logic signal names
of the test object and the assigned hardware channels of the testing device in a cross table. The
second part contains the executing statements in a Pascal-like notation.

The system enables interaction with the user via the keyboard or available data files. The output
is written on the screen. Also graphics are possible enabling a dearly arranged presentation of the
obtained results. The data can be stored in files, which allows postprocessing with commercial
software packages such as MATLAB or MATHEMATICA.

Below, some examples of statements are given to demonstrate the features of the test set. The
statements are grouped after their functionality.

I/O-statements: PUT signals; GET signals; FPUT signals ; FGET signals; CLEAROUT sig-
nals;

While the statements PUT/GET write and read signals to the modules Digital In/Out and
Analog In/Out, FPUT and FGET enable to write/ read a list of data in a stack for dynamic
testing. CLEAROUT resets the stack.

Timing and trigger statements: TRIGGER module, clock, number, edge, delay;
STARTOUT signals, clock, trigger, mode; STOPOUT signals;
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Figure 2: Software concept of the PC-controlled testing device.

TRIGGER generates a trigger signal on the bus line number by a specified module. The signal
is synchronized either with the rising or falling edge of a specified clock and can be delayed.

STARTOUT activates a stack operation, which is started by a specified trigger pulse, for dynamic
signals to a given dock. The mode enables starting, stopping or a synchronized operation with
the rising or falling edge of the dock. STOPOUT stops the stack operation of dynamic signals
without a reset of the stack.

Programming statements: PROCEDURE BEGIN END, FOR DO DONE, DO UNTIL
DONE, IF THEN ELSE ENDIF

The statements correspond to the usual Pascal syntax as do the arithmetic operators.

File statements: RESET file; REWRITE file; APPEND file; READ file, signal; WRITE file,
text, signal; CLOSE file;

The TPL enables access to so-called protocol files. Such a file starts with the name PROT and

has as an extension a number between 0 and 999. A PROT file is opened for reading by the
statement RESET or for writing by REWRITE, respectively. APPEND allows the appending of
data. Data are handled by the READ and WRITE statement, where file = -1 enables reading
from the keyboard or writing on the screen.

Graphic statements: GRON xmin, xmax, ymin, ymax; GROFF; GRPLOT x,y; GRLINETO

x ,y;
GRON switches the graphic mode on and defines the scaling. GRPLOT draws a point x, y and
GRLINETO a line to a new point x,y from the last point defined by GRPLOT or GRLINETO.

The language is expandable for new modules and any C-routines can be embedded. The state-
mentsare also available in a C-library, which allows the inclusion in any C-routines.
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4 Conclusion

An analog and digital test set has been introduced providing a very comfortable and automatic
testing of CNN chips. The hardware is structured into single modules, which communicate via a
common system bus to a host computer. Depending on the test object, the system configuration
can be chosen just by putting the requested cards into the slots of the system bus. The applied
modules must be specified in a definition part, where also the reference between signal names
and their assigned hardware channels must be defined. A test program language based on an
interpreter has been developed that uses a notation similar to Pascal. Thus a variety of features
has been achieved with only a small set of statements, which is easy to use.
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Abstract

This paper discusses neural networks with the simple piecewise linear limiter (2),
which owes much of its popularity to its application in the CNN-model. We present a
new approach to understanding the dynamical behaviour of Hopfield type and related
models with these limiters. The approach allows for a better intuitive understanding
of the model and a good assessment of the possibilities of the model.

1 A geometrical interpretation

Consider a time-continuous Hopfield type neural network with piecewise linear lim-
iters as described by

y = f()(1)

where

z(t) E RN is the state vector at time t
y(t) E RN is the output vector at time t.
N is the number of neurons.
L : RN --* RN : y --* Ay + b is an affine operation, specified by the weight matrix
A E RNXN and the vector b E RN.

f : RN---+ RN :
fi(x) = -lif Xi <-1
f1(z) = Ziif-1<Xi<1 (2)
fj(X) = 1ifai >1

f is the projection on the closed hypercube C = [-1, I]N. A neuron is said to be in
the linear region if - 1 < xi < 1 and it is saturated if zi > 1 or xi < - 1. The neurons
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-11

Figure 1: the piecewise linear limiter fi

on the b;,undary, [xi[ = 1, are assigned to the region they are entering, i.e. to the
linear region if xi(-x 1 + Li(x)) < 0, to the saturation region if xi(-xi + Li(x)) > 0
and to both if xi(-xi + Li(x)) = 0.

The CNN model, as introduced in [l1, is a special case of this model with struc-
tural restrictions imposed on the matrix A. The input and the independent current
sources of the model are both absorbed in the vector b.

Any system
P = -p + S(p)

where p E RN is called the state of the system, can be interpreted geometrically in
state space as "p follows S(p)": The velocity P of p is the vector which points to
S(p) when based at p. Hence p instaneously evolves towards S(p) with a velocity
proportional to the distance. Of course S(p) changes accordingly, such that p evolves
like someone following his shadow S(p), for ever or until p and S(p) coincide.

This point of view is especially fruitful for the model (1), with a piecewise linear
limiter (2) where the shadow S(x) = L(y) = L(f(x)) has a simple geometrical
interpretation, leading to intuitive insight in the dynamical behaviour. The output
y = f(x) is the projection of the state x onto C. The shadow S(x) = L(y) is the
corresponding point (under the affine transformation L) of the parallellepiped L(C).

Fig. 2 shows an easy example for a network with two neurons. A state, initially
located in q, starts moving towards its shadow. As the corresponding output, moves
along an edge of C, the shadow moves along an edge of L(C). After the output has
reached the corner p, the state converges towards a stationary shadow.

2 Benefits of the approach

A classical approach to understand the behaviour of the model with piecewise lin-
ear limiters, which has been used in CNN literature [2], considers the system as a
piecewise linear system with 3 N different regions, defined by fixing for each neuron
whether it is in the linear region, saturated at 1 or saturated at -1. For a region
with k neurons in the linear region, the output y lies on a k-dimensional face of
C. In each region the system behaves as a (local) linear system, with generically
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Figure 2: a) the shadow S(x) of a state x, b) a state follows its shadow

as many eigenvalues equal to -1 as saturated neurons (the other eigenvalues can
also equal -1 by coincidence). There is a one-to-one correspondence between the
3N regions and the 3N subcubes ("hyperfaces") of the hypercube C.

We can easily recover this result by means of the geometrical interpretation, and
identify the subspace corresponding to the eigenvalue -1 and the subspace corre-
sponding to the other eigenvalues. The easiest case occurs when all neurons are
saturated. All eigenvalues of the local linear system are -1, implying movement
in a straight line. In terms of the geometrical interpretation, the state moves to-
wards a stationary shadow until either it finds it or it enters another region (the
shadow starts moving). If k neurons are in the linear region, the output lies on a
k-dimensional face of the hypercube C, and the shadow lies on a k-dimensional face
of the parallellepiped L(C). If a state lies in the k-dimensional hyperplane contain-
ing this face of L(C), it stays in it. If the state doesn't lie in that hyperplane, it is
attracted towards it. The hyperplane is parallel to the eigenspaces corresponding to
the N - k eigenvalues (generically) different from -1. The eigenspace corresponding
to -1 is orthogonal to the face of the hypercube C.

The shadow approach adds global insight in the dynamical behaviour to the frag-
mented insight of the piecewise linear approach. To understand the transition in
fig. 2b of a neuron from -1 to 1 through the linear region, the piecewise linear ap-
proach gives different explanations depending on the eigenvalues of the local linear
system (or on the horizontal distance between the shadows). If the system has a
positive eigenvalue, the transition of the neuron will be explained as an exponen-
tial evolution away from an unstable equilibrium for which the neuron would take a
value less than -1. With the negative eigenvalue, there would be attraction towards
a stable equilibrium larger than 1. With the shadow approach, one can easily see
that the shadow starts at the right hand side of the initial state q, and will stay
ahead during the transition to p.

The boundedness of the states, as first proved in [1] follows easily from the fact that
the shadow always lies in L(C).
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Another merit of the shadow approach lies in the comparison of the model (1) with a
related Brain-State-in-a-Box model, which has also been studied in CNN literature
[3],:

-U= + f(v)
v= L(u) (3)

where u, v E RN.

It is well known that the associated state v = L(u), behaves exactly according
to the equation of the Hopfield model (1). However, although this explains some
of the relations between both models, it is still surprising that both models show
similar binary input output behaviour, when y is considered for (1) and u for (3).
This fact can be explained by observing that u follows a shadow f(v) = f(L(u)),
which evolves exactly the same way as y in the Hopfield model. Therefore, it is not
only possible to map every trajectory of u in the BSB model onto a trajectory of
y in the Hopfield model by applying f o L but in addition we know that a point
of the former trajectory is moving towards the corresponding point of the latter
trajectory. It follows immediately that both models have the same equilibria. The
attraction basins are generally different, although also this difference is often smaller
than expected, since the location of the attraction basins is closely related with the
location of unstable equilibria, which are equal for both models.

The main result thus far obtained with the shadow approach is a set of linear
inequalities guaranteeing the attraction of all neighbouring patterns (differing in
one neuron) to a given pattern. A heuristical solution of these inequalities leads to
a new design rule. This will not be treated here since there is no direct connection
with CNN. The results can be found in [4] and a more detailed account is given in
[5] and [6].

3 A tool for CNN template analysis

The shadow approach can also be a tool in the analysis of templates for CNN.
Because of the cellular nature, the behaviour of these models can often be understood
by isolating a small part. Consider, for example, the opposite-sign templates as
studied in [2] [7] and [8]. The matrix A in (1) is tridiagonal with a constant value p
on the diagonal, -s on the upper-diagonal and s on the lower diagonal and b = 0.
When (p- 1)/2 < s < p- I, this system behaves as a connected component detector
(CCD). If x, = 1, it converges to an equilibrium with leading neurons 1, followed
by alternating neurons 1 and -1, with as many times -1 as connected regions of
-1 in the initial image. If x, = -1, it detects connected regions of 1 in a similar
way. Fig. 3a shows the trivial case with two neurons only, where every pattern is
stable. For instance, the pattern [-1 - 1] should be read as "no components of
ones". Now we add a neuron in front of the first two. A crucial observation for
the CCD is that the first neuron never changes, once it is saturated. Therefore the
effect of adding the first neuron can be described as adding a vector b to the system
of the remaining neurons. Therefore, if a -1 is added (indicating ones are counted),
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the parallellogram of fig 3b, showing the state space for neurons 2 and 3, is located
more to the left, such that the pattern [(-1) 1 1] is now unstable and is attracted
towards [(-1) -1 1] to be read as "one component of ones". If a I is added in front,
the paralleilogram is shifted down and the system similarly counts components of
-1. If an intermediate value, close enough to 0 is added in front, neurons 2 and 3
temporarily behave again as in the case of only two neurons, until the first neuron
gets saturated at 1 or -1. One can extend this argument to see that the system
behaves as a connected component detector for any number of neurons. Finally,
note that the description of the parallellogram shifting up and down, according to
the value of a third neuron is nothing else than a two-dimensional representation of
the parallellepiped L(C) in the threedimensional state space.

a) x2b) x

1=-I xl=

Figure 3: a) CCD with two neurons b) CCD with three neurons

4 Conclusion

A new approach to understanding the dynamical behaviour of Hopfield type and
BSB type neural networks was introduced. The method adds intuitive global in-
sight to the often fragmented insight of classical approaches and is useful for CNN
template analysis.
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Abstract.The following results have been obtained on the
stability analysis of Cellular Neural Networks(CHNs).
i)By properly defining the Lyapunov function for the CNN we have
proved that CHls with opposite-sign template structure are
completely stable for certain values of template values.
ii)By using the 'Toeplitz-Tridiogonal'structure of the state
matrices of CN~s with positive-cell linking property we have
given some conditions on the template values such that all
trajectories of CHNs converge to stable equilibria.
iii)While investigating the conditions for the existence of
equilibrium points of Clus,we have obtained a necessary and
sufficient condition for the existence of an equilibrium point
in each saturation region,partially saturation region and linear
region in which the CHN operates.Rctually this condition is
valid not only for CNHs,but also for more general types of
continuous-time neural network models.Finally,stable and
unstable equilibrium points have been determined.
l.lntroduction -

An analog type neural networks 'CNN' with its local
interconnection properties have found many application areas and
there have been many works on the stability analysis of CNN's
[1-6] .In [I], Chua and Yang proved that a network with
symmetric weight matrix is completely stable (i.e., every
trajectory tends to an equilibrium state). In (2],Chua and Roska
attempted to enlarge the stable unlverse of CNN's by avoiding

*This work was supported in part by the Dept.Electrical
Engineering,Katholieke Universiteit Leuven,Belgium.
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the restriction symmetry on the weight matrix such as opposite-
sign templates with p>1 and conjectured that this type of CNN's
are completely stable.But Zou and Hossek ,in [3] proved that for
some template values (s>p-1) CNN's with opposite-sign templates
have not equilibrium points in the saturation regions which are
the only stable regions where stable equilibrium exists. Thus,
they showed that complete stability does depend on the template
values and the opposite-sign template structure is not itself
sufficient for the complete stability.Their emphasize on the
existence of equilibrium points in the stable regions is
important such that for the symmetric weight matrix case the
existence of equilibrium points in the stable regions have yet
to be proven.

By defining the Lyapunov function, the conjecture "the
CNN with opposite sign-template with s<p-1 is completely stable"
given in [3],can be easily proved since s<p-1 already implies
the existence of equilibrium in the saturation regions.For the
state mcdel of the form

0

X=-X + Rf(X) (1)
where P has the form asp -S

s p -s3

[ pj
nxn

after defining the energy function as
.I

E(t) = ft(X) [A-i]f(X) (2)

where f(X)=[f(x1 ) f(x 2)...f(x,)]t , X=(xl, x2,..., xn)t and

f(xi) is a piecewise linear function as defined in [1] then it

can easily be shown that

(p-i) n
E~t) S f 2(xi )

2 21
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(p-1;

which is bounded (-i.e., IE(t)I< .n since lf(x:)I1).
2

The rate of change of energy can be found as

dE(t) (p-l) df(xi) dxi df(xi) I lxiI

-- - 2f(x1 ) - - with =
dt 2 dxi dt dxi 0 IxilŽJ

which is indeed equal to

dE(t) n dxI

= -(p-I) I xi for IxiI' (3)

dt i=1 dt

From equ.(1) xi(p-1)xi*sxi.-1 -Sxi+1 and by substituing this into
equ.(3)

dE n
-= -(p-l) 2 1 xi 2(t) C 0 Wxi

dt iMI

is obtained.

2.SOME REMARKS ON THE STABILITY ANALYSIS OF POSITIVE-CELL
LINKING RNO OPPOSITE-SIGN TEMPLATES

The remarks given in this section is based on the
eigenvalue formula of Toeplitz-tridiagonal matrices given by
U.F.Trench [7]. In [2) the state model (1) with

p 5
r p s

r p . r,s>0 (4)
8 >

r p

is considered and by remark 3 It was proved that the solution
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of such a dynamical system , for almost ali initial conditions
converaes to stable equiiibria which are in the saturation
regions. This result is the direct consequence of the theorem
(4.1) given by Hirsch in [8) .Rctuallu the system (4) with
r.s>O defines a completely stable system according to the
theorem given by J. Smillie [9)

In the linear region,above system corresponds to the

P-1 3

X r p-1 , X

r p

nxn

and its eigenvalues are
qT

U "(p-I)+2 4•r.s cos(3- ), 1q~n (5)
n+1

i) p>1 ensures that there exists a Positive eigenvalue and hence
almost all solutions tend to leave the linear and partial
saturation regions towards to the saturation regions.
ii) If we consider case I "i.e., (p-I)>24Tr.- , r.s>O then all the
eigenvaiues are positive and all the solutions of system (4)
tends to complete saturation regions.
iii) Considering case II "i.e., (p-1)<2r.T.. , r.s>O, p>1 and

I (P-l)

Cos(- ) < - then all the eigenvalues are
n•1 2rs

positive and all the solutions converge to the stable
equilibria in the saturation regions if they exist.

iv) Case III implies that almost all solutions will leave the
linear and partial saturation regions even if o<1 since
there exists a positive eigenvalue.

The above argument shows that by arranging the template
values we can obtain a completely stable system such that all
the solutions of (4) converge to the equilibrium points in the
saturation regions and case (iv) also shows that almost all
solutions converge to the stable equilibrium points in the
complete saturation regions even if p<I as we already know that
p>1 is not a necessary condition for the stable equilibrium
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points being in the saturation regions but only a sufficient
cond it ion.

The formula (5) also confirms the results obtained by
Roska that the real part of all the eigenvalues of system (4)
with r=-s" i.e., opposite-sign template system' in the linear
and partial linear regions are strictly positive since

qz

Xq=(p-1)+j scos( -)
n+1

and p>1.
3.Conditions For Ekistence of Equilibrium Points

Let's consider ýhe dynamic equation (1). The external
inputs are not considered because the system with constant input
can always be transformed into this form by the method given in
(10].

Theoreml: There exists an equilibrium point in each of 3 n

regions (including linear,partial saturation regions and
complete saturation regions) if and oniu if the matrix A-I is
diagonally dominant.
Corollary : If there exists a row (index L) such that

n
at -l<- 1 IaLjl (which indeed implies aLI<1) (6)

j L

then there doesn't exist any equilibrium point in any saturation
region.
note 1: In [11], it has been proved that if inequality is
satisfied for every 1=1,2...n (i.e., if "I-R" is strictly
diagonal dominant with oal<1) then there exists unique stable

equilibrium point.
Conjecture : If A-I is strictly dominant then a trajectory
corresponding to the system (1) converges to an equilibrium in
one of the saturation regions (i.e., the systems (1) is
completely stable).
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Abstract. The problem of using dynamical equilibria of a Cellular Neural
Network (CNN) of relaxation oscillators is faced. The behavior of a planar
matrix and of a two-torus of connected oscillators is investigated by
computer simulation. Some theorems are stated in the case of: i) two
oscillators, ii) a tree of oscillators, iii) a loop of oscillators.

Introduction. It is well known that among neural networks, CNN's (1i

exhibit the advantage of possessing only local connections. This property

is important with respect to their implementation by means of dedicated

integrated circuits.

On the other hand, some recent studies put into evidence that many

biological systems behave as distributed oscillatory systems i .e. large

arrays (generally planar) of coupled oscillators. A good conjecture, based

on results of experiments performed on the visual cortex of cats and the

olfactory cortex of rabbits (2,31, seems to be that synchronization on

different attractors emerging from a chaotic substratum could be an

efficient way of storing and processing information.

These two facts induced us to start studying a new architecture

possessing these two distinctive features:

1) Its topology is similar to that of a planar Cellular Neural Network

with connectivity 1, but with links only along rows and columns of a matrix

(no diagonal connections);

2) Neurons are oscillators instead of nonlinear controlled sources. We

chose to use relaxation oscillators [4) for two reasons: i) Computer

simulations can result more exact as in this case integration is

straightforward; ii) Hardware implementation can take advantage of using

only digital circuits.

Therefore we study a matrix of connected oscillators, the behavior of

which is of course dependent on many parameters: the natural frequency of

each oscillator, the strength of each coupling, the initial state of the

system. As a natural extension, we will consider also the same matrix wourd

on a two-torus, even if the analogy with biological structures becomes less

evident in this case.
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At our best knowledge it is possible to find in literature only

studies on the existence of periodic attractors for systems of sinusoidal

oscillators with random natural frequencies and equal coupling coefficients

(5,61.

In the following, we shall denote as k. the strength of the couplingtJ

between oscillator i and j, i.e., the amplitude of the signal arriving to

oscillator i from oscillator j. k.. determines the natural frequency of

oscillator i.

Experimental results. Due to the amount of parameters we have to deal

with, that is very large even in the case of a small (4 by 4) matrix, as a

first step we started using the so called "experimental mathematics".

Therefore we performed the following experiments:

A) We considered a planar matrix of 16 identical oscillators (i.e.

having the same natural frequency) and found the following types of

behavior:

1) In the case when the coupling coefficients are all equal to each other,

the behavior of the system is chaotic for every initial state. The Lyapunov

exponent, computed by following trajectories in state space and applying

Wolf's algorithm (7], seems to be everywhere positive, except when starting

from the origin of state space, where Lyapunov exponent is zero.

2) In the case when the coupling coefficients satisfy condition
sign(k..) -3ign(k..)

%li J1.

(opposite-sign condition), the system always reaches a stable oscillatory

state at the common natural frequency of the oscillators, with every

oscillator differing in phase for 1/4 period from its neighbors (obvious

consistency conditions apply). Magnitude of the coefficients is not

important.

The stabilizing effect of the oppos:, sign structure is analogous to

the case of ordinary Cellular Neural Networks (8].

3) With random coupling coefficients, different stable limit cycles are

observed, together with non-periodic evolutions: quasi-periodic or chaotic.

In order to inquire into the structure of the attraction basins of the

said limit cycles, we performed simulations taking initial conditions along

segments in the 16-dimensional state space. Structures of these sets look

not at all trivial, and transitions between neighboring basins often seem

to be fractal. However, the presence of a set of clearly distinct stable

limit cycles, with attraction basins possessing at least a closed inside,

makes us believe that they might lend themselves to be used as "codes" or
"memory states" for a content-addressable memory (CAM).
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The overall structure of attractors is more dependent on the mutual

relations between coupling coefficients (e.g. sign, topology...) than on

their magnitude. In next section this is proved on simpler structures.

Another set of experiments was performed in order to study the

transition between a situation when a stable limit cycle is observed (case

3) and that described under case 1 (transition to chaos). For this purpose,

the evolution of the network was simulated for different values of its

parameters obtained by moving along a segment in the 48-dimensional space

of free coefficients. The results of one of these simulations are shown in

figure 1, where the ordinate is the normalized frequency attained at the

end of the transient. Zero ordinate means non-periodic behavior.

B) We also considered matrices on a two-torus, which also showed

trivial stable behavior under the opposite-sign condition.

In the case of identical coefficients, toroidal matrices show a much

larger number of periodic states, with smaller, most probably zero-measure,

attraction basins. Two kinds of behavior were observed, the prototypes of

which are shown in figures 2 and 3 where the abscissa is taken over a

segment, in the 16-dimensional space of initial states, joining two proper

sets of them. Figure 2 shows continuous change among indifferent

equilibrium limit cycles, while figure 3 shows complex kneading of periodic

and non-periodic evolution. As an example of instability, the leftmost

state of figures 2 and 3 (the same in the two cases) is periodic, but

Lyapunov exponent estimation gives a value of about 1.2.

In the case of coefficients all different from each other, randomly

chosen, no periodic evolution has ever been observed.
Theoretical results. We shall consider in this section simpler structures

than matrices, in increasing order of complexity. Most of the results
described can be straightforwardly extended to sinusoidal oscillator

systems.

1) The simplest system consists of two mutually coupled oscillators.

S"uch a system shows a wide spectrum of behaviors: (i) single stable limit

cycle, with oscillators operating all at the same or (ii) at different

freqjencies; (iii) periodic evolution at a frequency dependent on initial

conditions: (iv) quasi-periodic or non-periodic motion.
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The following results are proved in [9]:

Theorem 1: Necessary and sufficient condition for the two oscillators

to evolve at the same frequency is that

I k12 - k21 I >- Ik 1 - k22 1

22zk12 k11k21

Duty cycle is 50%.
Theorem 2: If k I/k 2 2 - k2/kf r. then the evolution of the system

is periodic if r is rational, else quasi-periodic, and the rate of the

frequencies of the two oscillators is r.

Theorem 3: If k - k2 2 and k = k (bifurcation condition) the

systems evolves periodically with no transitory, because there is an

infinity of periodic indifferent equilibrium states.

2) A more complex system is a tree of oscillators. For such a

structure it is possible to compute easily a linear relation between the

frequencies of the oscillators. The algorithm is described in [9]. It can

be extended to a general structure, where also loops are present, but the

relation becomes nonlinear, and computational difficulty increases

rapidly. The following results are proved in [91:
Theorem 4: Let

1. - - E R.DI'
1. '.3 33 E-<t.>

e-=1 -ERD

3 kc-<j> J

k~di

R.= k. / k..

If all oscillators evolve at the same requency f. and DL Othen f can be0

computed through the following recurrent expression, starting from any

oscillator i of the tree:

f -0.5 1P. ID (1)

where

NO- .k . R ,. 9L.

Li viJ~.t% k. Ej N

j kc-j>

kO.

and <i> is the set of indices of all oscillators connected to oscillator i.

If all oscillators have the same natural frequency and Dm-O
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(bifurcation condition) then (1) takes the form 0/0, and so loses

significance; multiple attractors are present (as in the case of two

oscillators), depending on initial conditions.

When a loop is considered, the bifurcation condition may be stated as

the bifurcation condition on two open chains obtained from it.

It is reasonable to conjecture that the bifurcation condition for

matrices corresponds to the fact that any tree that can be extracted from

the matrix is in the bifurcation condition.

Conclusion. A planar array of relaxation oscillators has been considered in

the view of using it as a new basic structure in the field of Neural

Network architectures. Although this goal has not yet been attained, such a

structure, never studied before, exhibits a rich and interesting behavior.

A systematic research about it was started and some basic results were

obtained.
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Fig. I - Normalized period vs. normalized abscissa on a segment
(48-dimensional space) joining two different sets of coefficients, one
corresponding to periodic behavior, the other to chaos (bottom ordinate)
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Fig. 2 Normalized period vs. normalized abscissa on a segment joining two
different initial conditions in state space. Infinite periodic attractors
of zero measure are shown.
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Fig. 3 - Normalized period vs. normalized abscissa on a segment joining two
different initial conditions in state space. Mixed behavior of chaos
(bottom ordinate) and periodic oscillations is shown.
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abstract
In this paper, Discrete-time Cellular Neural Networks using digital

neuron model with DPLL (digital phasc-lockcd loop) is proposed. Since
consists of all digital elements, it is easy to realize the neuron model by VLSI.
We show theoretical analysis and apply it to Shadow Detector in [3] in order
to confirm the action of the our neuron model by the computer simulation.

Introduction
Cellular Neural Networks [1][2] represent a new paradigm for

nonlinear analog signal processing. In particular, Discrete-time cellular
neural networks (DTCNN) have been introduced in [3], which represent an
efficient architecture for image processing and pattern recognition. The
system can solve global task, although the cell are only locally connected.
The simple structure of single cell and the local connectivity make them well
suited for VLSI implementation. The realization of DTCNN has been reported
in [4] . This has analog circuit structure designed for a CMOS process.
However, analog circuits have the following weak points. It is difficult to
conect neuro-chips and realize modifiable analog synaptic weight. And
the error performance of analog circuits are poorer than that of digital. It is
widely expected to realize the DTCNN by all digital circuits.

The neuron model by using multi-input multilevel-quantized digital
phase-locked loop (MM-DPLL) has been proposed in [5]. This model has the
following advantage. Since it consists of all digital elements, it is easy to
realize the neuron model by VLSI. This is the digital neuron model utilizing
the phase information. By using the phase, the input signal is modulated by
using DPLL, so the model can be applied to the various problems. In [5], it
was applied to the Hopfield type associative memory and the pattern
recognition. This neuron model satisfies the requirements of the neuron's
characteristics such as, spatial summation, temporal summation,
thresholding and learning by variable weight. Since the phase modulated
signal is widely used in field of the modern digital communications, the
phase information type of the digital neuron model will be required in near
future. In this study, we propose Discrete-time Cellular Neural Networks
using digital neuron model with DPLL and show theoretical analysis. We
apply it to Shadow Detector in [31 and confirn the action of the our neuron
model by the computer simulation.

Discrete-time Cellular Neural Networks
DTCNN are defined by the algorithm:

Xc(z) = I ac yd(,)+ 7. b', Ud+ ic
daNr(c) dENr(C) (1)
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yC(,) =f (X C (I-I)) = I for xc>o
-1 for xc < 0 (2)

where the output state yC(t) of a cell c is binary and is determined by the
sign of xC(t-1). The value of xc is controlled by the inputs and outputs of
adjacent cells d within an r-neighborhood Nr(c). This is defined as the set of
adjacent cells within a distance r including cell c. The template coefficients
are translational invariant. The value of ic' e M is constant and used for
threshold.

Digital Neuron Model with DPLL
Before fixing the circuit structure, the grid topology and the

neighborhood size have to be determined. We have chosen a 1-.neighborhood
on the rectangular grid as shown Fig.1, where each cell is connected only to
its nine nearest neighbors. In this case, the proposed model as shown in
Fig.2, consists of eighteen multilevel-quantized phase comparators(P.C),
eighteen random walk filters (RWFi (i = 1-18)), a random walk filter (RWFc),
a digital voltage controlled oscillator (Digital V.C.O.), a binary-quantized
phase detector (P.D.), and a phase sifter. These are all digital elements. We
treat the phase modulated signal as input. The phase of input signal leads (or
lags) the reference phase by phase difference Oyd and Oud [rad]. So the input
of this model can be expressed as analog value.

Each multilevel-quantized phase comparator (P.C.) compares the
corresponding input 0yd and 0 ud with the output phase 0(t) of digital V.C.O.,
where 0(t) is initially set to be equal to the reference phase. As shown in
Fig.3, the phase difference is quantized by using the internal high-speed
clock operating at R-times the loop natural frequency fo.

A sequence of pulses produced as lead (or lag) signals is fed to up (or
down) inputs of each random walk filter (RWFi) in Fig.4, which is an up-
down counter of set length Ni. The content of this counter is increased by up
inputs and decreased by down inputs. When the content reaches 2Ni or 0, an
erase(-1) or add (+1) signal is obtained as the output respectively, and the
counter is simultaneously reset to Ni. In short, RWFi divides the sequence of
pulses by Ni and acts as the constant multiplier of weight aCd and bCd = 1/Ni.

The sequence of pulses weighted by acd and bed from RWFi is summed
spatially as follows,

Z acidt~C() bdc(ud (t)- c (t))
dE Nr(c) de Nr (c) (3)

and the spatial summation is sent to the second RWFc(set length Nc) which
keeps the output of digital V.C.O. stable and provide erase (-1) or add (+1)
signals. The second RWFc is inserted because a large number of pulses
control the output phase 0(t) excessiveiy.

Digital V.C.O. consists of three parts : fixed frequency oscillator, Phase
controller and divider. As shown In Fig.5, the phase controller eliminates
one pulse for an erase signal or adds one pulse for an add signal with the
fixed frequency oscillator. The output of phase controller is divided by R to
provide the output signal synchronized to the sum of the weighted input
phase signals.

Binary-quantized phase detector (P.D.) compares 0(t) with threshold h
of the phase decided by phase sifter. When 0(t) exceeds h, the output of our
neuron model is y = 1, otherwise it is -1,

y=SGN(O-h)=I 0>h
-1 l < h (4)

Our model can be analyzed by linear model shown in Fig.6 because the
phase comparison characteristic is linearly approximated at large R (
dividing ratio) , where
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R12 ir : phase comparison coefficient
acd, bcd = I/Ni coefficient of RWFi
1/Nc : coefficient of RWFc
2rfo /R coefficient of digital V.C.O.

fo : the input frequency
The linear differential equation of this model is expressed as( Z ac + I bcud

d (t) _E E r (C) de.Nr(.

\ deN,(c) deN,(c) (5(5)

S d de Nr(c d ) (6)

O(t) is obtained as

Z ac yd I bdcu
dXd E Nr (C) d E Nr (C)

(7)
At the stationary state of the step response, Eq.(7) becomesSZ ac yd + 7- b CudI

0~d d
dENr(c) dE Nr(c)

0(0 - a' + 7- b
d E Nr(c) dENr ( (8)

In Eq.(6), z is decided by the input frequency fo , set length Nc of second
RWFc and the sum of weight. By solving T , we can obtain the time that a
neuron reaches the stationary state and set up a discrete time step.

Simulation
In the simulation to confirm the action of the our neuron model, we

use Shadow Detector[4]. The two-dimensional output pattern should consist of
the shadow created by an illuminated input pattern. Accepting the
restriction of a light source only at the right boundary of the grid, the task
can be solved by a wave propagation that starts there. The initial state is
black and the pattern is used as input for the cells. The wave propagation in
the form of transitions from black to wivte starts from the right boundary
and stops, if a black pixel in the input pattern is reached. The remaining
black pixels correspond to the shadow. Set length of RWFi and weight set in
all neuron are as follows:

N1 N2 N3  00 00 00 NI 0 N1l N12 00 00 00
N4 N5 N6  -0 32 16 N1 3 N 14 N15  = -c 16 -
N7 N8 N9  00 cc 0, N 16 N1 7 N 18  00 ,0 00

0 0 0 0 0 0
a = 0 1/32 1/16 b = 0 1/ 16 0

0 0 0 ( 0 0 (9)
The input signal is modulated by Oyd and 0ud = +nt/2 [rad] at the black region (
yd, ud = 1), and the signal modulated by Oyd and Oud = -r/2 [rad] at the white

region ( yd, ud = -1). When the input frequency (fo) is l00kHz and Nc = 32,
we considered one cycle to 0.01[ms]. Fig.7 shows an input pattern and the
output states in 0,2,4.6,8,10 cycle. From this, we can find that our digital
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neuron model has the correct action. The result shows that MM-DPLL can be
applied to the DTCNN.

Conclusions
Our neuron model consists of all digital elements. DTCNN has the simple

structure and local connectivity. Discrete-timc Cellular Neural Networks
using Digital Neuron Model are suitable for VLSI implementation. It is
possible to realize the architecture of Discrete-time cellular Neural Networks.
in which the internal information is the phase.
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Abstract

Symmetry properties of cellular neural networks on square and hexagonal grids are investi-
gated: While the symmetry inherent in a given problem should be reflected in the structure of a
CNN designed to solve it, the degree of symmetry possible in the network is limited to the
symmetry group of the grid it is defined on. The exact numbers of independently choosable
entries in both square and hexagonal CNN-templates with different important kinds of symme-
try are compared. As expected, the higher symmetry of the hexagonal grid leads to a significant
reduction in the complexity of the templates.

) Introduction

in technology, sampling of spatial information is done on square grids. Nature, on the other
haind, organizes its information processing elements in hexagonal arrays. Although the evolu-
tionary success of this arrangement is probably due to the fact that it corresponds to the densest
racking of circles in the plane, which arises naturally during cell growth on surfaces, it may
also simply be better suited for many problems because of its higher degree of symmetry.

in Cellular neural networks or CNNs as introduced by Chua and Yang [1], processing ele-
ments are also often arranged in a regular grid, and programming for a particular task is done by
. hoosing a set of parameters which are arranged as a regular template. As will be shown,
cymmetrical tasks pose more stringent constraints on hexagonal templates than on square ones.

ia practice, this means that hexagonal systems may be easier to build. Symmetry may also be
-atroduced as a design constraint in a more direct design method such as the one proposed in
[Z].

2) Coordinate Systems and Neighbourhoods

On both grids, coordinate systems must be introduced. To eliminate boundary problems, the
grids are supposed to be infinite and plane-filling.

Let SG be the square grid with the cartesian coordinate system, as shown in Fig. 1. Individual
cells are denoted by C(i, j), where i is the row index and j is the column index.

The r-neighbourhood NT'(i, j) of a cell C(i, j) in SG, r e N being a positive integer and the

superscript s denoting the square grid SG, is defined as in [1] as the following set of cells:

Nr(i, j) := (C(k, 1) 1 max ({k - il, Il -ll • r). (1)

In order to simplify notation, we will also allow neighbourhoods of coordinate pairs.
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1- 11 1,2 1,3 1,4\ \ \

2- 2,1 2,2 2,3 2,4

3- 3,1 3,2 3,3 3,4

4 4,1 4,2 4,3 4,4

Fig. 1: The square grid (left) and hexagonal grid (right).

Let H-jG be the hexagonal grid, with the hexagonal coordinate system as shown in Fig. 1.

Cells are again denoted by C(i, j), where i is the row index and j is the "slanted" column index.

The (hexagonal) r-neighbourhood NP(i, j) of C(i, j), where the superscript h indicates the
hexagonal grid H/-G, is the set of (coordinates of) all cells whose centers may be connected to
the center of C(i, j) by a curve that intersects at most r hexagon boundaries.

As HG still has the structure of a lattice, it can be slanted such that the centers of its cells fall on
a square grid. The image of Nh(i, j) under this transformation is the subset of N•(i, j) that ex-
cludes all cells in the top left and bottom right comers whose manhattan distance to the center is
larger than r. Therefore Nh(i, j) is defined analytically as:

Nrh(i, j) := {C(k, 1) 1 max (Ik- i4, R -J, 1(k- i) + (I1-jA} < r). (2)

3) Symmetrical Problems

Symmetry is the invariance of an object under a group of actions. The symmetry groups of
most image processing problems are continuous Lie-groups. In electrical engineering systems,
however, image data is sampled before being processed on a discrete grid, which leads at best
to a discrete subgroup of the original Lie-group. Still, the symmetry inherent in an image
processing problem should be reflected as closely as possible by structural symmetry of the
processing array.

3.1) Space Invariance

Let M be some space and T(M) the largest group of translations that leaves the structure of M
unchanged. Then any image processing problem posed in M that is invariant under T(M) is
space-invariant.

The translation group T(R2) of the real plane R2 is simply given by

T(R2) = (tr: R2 -4 R21 t(x,, x2)=(xI + Ax1, x2 + AX2)A Ax,, Ax2 E R). (3)
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The translation groups T(SG) and T(9-TG) are isomorphic to T(Z 2), the restriction of T(R2) to
the integer lattice Z2 , which performs only integer offsets:

T(Z2) = (tr: Z2 --4 Z2 I tIi, j)-= (i + Ai, j + Aj) A Ai, Aj e Z). (4)

Space invariance of the connection coefficients ak .implies:

ak " Oj= atr•). 1) V i, j E Z A tr e T(Z2),

=> a"ci-j =ak+ Ai V Ai, Aj e Z. (5)

The connection coefficients in space invariant CNNs therefore depend only on the cells' relative
positions. This allows a description in terms of relative positions, the templates defined in [I]:

a(Ai, Aj) :a= a' ji+Ai j+Aj V i,j, Ai, Aj e Z. (6)

If interactions are local, a unique minimal Neighbourhood Nr=,0, 0) of the template's origin (0,
0) with minimal finite rmin exists, which contains all non-zero coupling coefficients:

rmin = mi (r I (a(i, j) a0 V (i, j) 9 Nr(0, 0))). (7)

A template a(i, j) whose elements are only specified for (i, j) e Nr(0, 0) (and which is assumed
to be zero elsewhere) is called an r-template.

The numbers ns(r) and nh(r) of entries in square and hexagonal r-templates are simply

ns(r) = INs(O, 0 = (2r + 1)2 = 4r2 + 4r + 1, (8)
r

nh(r)=INh(O, 0)1= 1 +6X i= 1 +3r(r+ 1)=3r2 +3r+ 1. (9)

For large r, a hexagonal r-template contains 25% less elements than a square one for the same r.

3.2) Isotropy

Let M be some space, and R(M) the largest rotational symmetry group of the neighbourhoods
defined in M. Then any space invariant problem defined on M that is also invariant under R(M)
is isotropical.

The n-element rotation group Cn consists of all n rotations about integer multiples of 1 3600,
Cn = (E, Cýn), C.n), ... , Cýn-1} (10)

where E is the unit element and the smallest clockwise rotation C(n1) generates the group:

c(ni+l) := •__n) o Cni), i e [{1, 2, ... , n - I), (1

c•nn =_ E. (12)

Group theory proves, that the invariance of any object under the generators of a group implies
its invariance under the whole group. The invariance of a square template under its rotational

symmetry group R(N,(0, 0)) = C4 is consequently implied by its invariance under C(1) whose
action is defined by

C 1 ): a(i, j) -+ a(j, -i). (13)
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Thus, a necessary and sufficient condition for isotropy of square r-templates is

a(i, j) = a(j, -i) V (i, j) E NS(0, 0). (14)

As (0, 0) is the only fixed point of C(l), and ali other template entries are mapped on and are
therefore identical to exactly three others, the number nS(r) of independently choosable elements
on isotropical square r-templates is given by

nS=r) - _r2 +r+1. (15)

Similarly, a hexagonal template is invariant under its rotational symmetry group R(Nrh(O, 0)) =

C6, if and only if it is invariant under C 1), whose action in H"G is defined by

66C(' : a(i, j) --. a(i +j, -i). (16)

A necessary and sufficient condition for isotropy of hexagonal r-templates is therefore

a(i, j) = a(i + j, -i) V (i, j) e Nh(0, 0). (17)

As (0, 0) is the only fixed point of C(1), and all other template entries correspond to five others,

the number ni(r) of independently choosable entries in isotropical hexagonal r-templates is

nh(r) -1 + nh(r) - 1 = 1 + 3r 2 + 3r = r2 + r + 1. (18)
6 6 2

For large r, isotropical hexagonal r-templates contain only about half as many independent
entries as square ones.

3.3) Complete Symmetry

Let M be some space, and S(M) the (maximal) symmetry group of the neighbourhoods defined
in M. Then a space invariant problem on M that is also invariant under S(M) is completely
symmetrical.

The symmetry group Cn,, of a regular n-sided polygon consists of Cn and n reflections:

0= C u a m1, ... , ann- 1)}. (19)

If n is even, the reflections are defined by the orientation of their axes as follows:

"* All axes contain (0, 0),

"* ao) is horizontal,

"* o'i + 1) is obtained from o(i) by tilting it 11800 clockwise around (0, 0).

By construction, Cn, is shown to be generated by On) and G( ). First,

C(n1) := 0(P o O~no), (20)

which generates the subgroup Cn of Cn, as shown in (10) to (12). The other reflections are then
obtained as follows:

n(2i) . c(iYo(nO) 2-i, i 1 ,
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Si2i +1) 4~O(1))(f 0) ~(, *,) (22)

Hence, a template is completely symmetrical iff it is invariant under 0•o) and Oan) on its grid.

The symmetry axes of square templates are shown in Fig. 2. The actions of a(ý) and 0(41) on
square templates are defined by:

a(Y0: a(i, j) -+a(-i, j), (23)

04 :a(i,J) a(j, i). (24)

A square template is therefore completely symmetrical, if and only if

a(i, j) = a(-i, j) A a(i, j) = a(j, i) V (i, j) E Nf(0, 0). (25)

The number n~s(r) of independent entries in a completely symmetrical square r-template is

nSs(r) = (i + 1) r +3r+. (26)
i=O

1 - -1 0 0-,

1A 1 n, 11 5

(46

(3 4) _ /3

06 (2 6 OT

Fig. 2: Possible symmetry axes of square templates (left) and hexagonal (right) templates.

Similarly, Fig. 2 also shows the symmetry axes of hexagonal templates. In hexagonal coordi-

nates, the actions of aoT) and o(1) are defined by

o(0°): a(i, j) -- a(-i, i + j), (27)

06: a(i, j) -a, i), (28)

and consequently a hexagonal template is completely symmetrical if and only if

a(i, j) = a(-i, i + j) A a(i, j) = a(j, i) V (i, j) , Nr(O, 0). (29)

As the odd numbered axes intersect cells at even distances from the center, but run between
pairs of cells at odd distances, one best constructs different formulas for the number nhs(r) of
independent entries in completely symmetrical hexagonal r-templates for odd and even r

(r +1)/2

nh (r) T r=2 i=r+llr +I+1)= r2 +4r+ 3)=r-12 r2 - +r+l, (30)

i=1
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nh r2

ncs(r)kenr = nfhs(r + 1)-(f+ 1)---+r+ 1. (31)

With the GauB bracket []: R -* Z, which yields the largest integer smaller than or equal to its
argument, one observes that, for odd r,

[r r2 (32)14 oddr =4'(2

which allows us to merge (30) and (31) into a single final formula for nh (r):

nhs(r) " [I ]+r+ 1. (33)

For large r, completely symmetrical hexagonal r-templates contain only about half as many
independent entries as the corresponding square ones. Also, the total number of independent
elements is much smaller than in the isotropical case.

4) Conclusion

For reference purposes, the results on the total numbers of independent entries in unrestricted,
isotropical and completely symmetrical square and hexagonal templates are compiled in Table 1.

square hexagonal

unrestricted 4r2 + 4r + 1 3r 2 + 3r + 1

isotropical r2 + r + r2 + r +
2

completely r2 +_3r_+
symmetrical 2

Table 1 :The number of independent elements in symmetric r-templates.

The following main conclusions can be drawn:

"* Symmetry in a CNN design problem must be considered as early as possible, as
its proper exploitation greatly reduce the templates' combinatorial complexity.

"• Isotropical image processing tasks are best solved on hexagonal grids, as in this
case the savings due to symmetry are much larger than on a square grid.
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Abstract

Reaction-Diffusion equations used to model biological patterning and structure contain
useful principles of processing in space; local nonlinear computation plus information spread
by diffusion. Some years ago we introduced the use of Reaction-Diffusion Equations as a
computational paradigm in image enhancement and analysis, in particular texture-defect
analysis. In this paper we desire to bring the Reaction-Diffusion processing paradigm to the
attention of the CNN-community. We discuss two classes of processing: First, non-equlibrium
systems which form periodic 'Turing' structures allowing analysis of textile images. Second,
systems which ar- able to smooth and segment grey-level images.

1 Introduction

Reaction-Diffusion (RD) systems are nonlinear vector partial differential equations, e.g. the two

component system

u4 = _(,, 11) + DV2 u (1)

where 1L is the vector of state variables, D is the diffusion matrix and u represents parameters in

the nonlinear vector function &(.) In a famous paper written to explain the existence of pattern and
structure in living systems, Alan Turing showed that such systems could spontaneously generate

patterned structures from a stable homogeneous initial state, and that diffusion effects produced
the instability [9]. RD-systems are currently proposed to explain patterns from animal coats [3],
shells [2] to physical systems [8].

Concerning our image-processing application, let's take the example of textile defect analysis.
The basic pattern-forming property of RD systems involves initial growth of a large number of
basis pattern modes, e.g., fourier plane-waves, followed by selection of a few interacting modes
by the nonlinearity to form a stable pattern. For a given parameter set, several solution patterns
may exist. If any of these patterns is similar to an applied noisy textile image with a defect, the
system will rapidly move to the closest pattern in all regions of the image except where the defect
is. Here the solution will be a different pattern with different numerical values, and leads to easy
detection of the defect. This approach was detailed in [4][5].

2 Periodic Structure Formation

Here we shall present the key stages in the analysis of one particular system emphasising details of
how it performs as described above. We take the a variant of the Fitzhugh-Naguino equation (see
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[3]), originally used to model nerve pulse propagation, which our analysis shows is the simplest

useful nontrivial RD system;

-- = lf(ul) - U2 + DV'u,

U__ = 1 (. -u2 + V 2U2) (2)

where the nonlinear function is taken as f(u) = aU +13u2 - -yuS, the parameters 3 and -y allowing
us control over the mix of quadratic and cubic nonlinearity. We think of (2) as havinj' the following
general form

j = Ju+Du+fN(u) (3)

where J(O) is the linearization of the functions in (2) evaluated at the operating point u = (0, 0),
(to avoid 'excitable behaviour'), and F_ is a nonlinear operator. Consider first the linear problem.
If we had been working in continuous physical space with periodic boundary conditions, we should
look for a solution as an expansion in plane waves with wavevectors kj. The linear operator would
become L = J(0) - kD and our expansion would be in terms of the vector eigenfunctions of L

1hM'hfnk>+c (4)
2=u,I h

We use the bra-ket notation for clarity, since in general L is not self-adjoint so we need the left
eigenvectors too. Bra's and ket's are parametrized by n, the upper (u) or lower (1) eigenpair of L,
a the linear part of the function in (1) which we shall take as a bifurcation parameter, and the
spatial frequency k. Equation (4) says the solution is a sum over plane waves each of which is a
combination of two vectors giving the contributions of components ut and u2 to x. Working in
the discrete physical space of our CNN, the above expansion holds, only the linear operator must
be modified,

E-1 (g -- 1I (5)

where g is the fourier transform of the discrete diffusion operator. Taking this as coupling
to 4 nearest neighbours, (see [6] for details of the 8-neighbour operator), the linear problem
Lknak > = o- 0.(k)lnak > then defines an upper and a lower eigenvalue o- as a function of spatial
frequency k. These dispersion curves are shown in Fig.l(a). A band of unstable modes is seen
which will define the evolving pattern. A full analysis of the linear problem [7] allows us to choose
D, e and a to satisfy various requirements additional to this unstable band; no time-periodic
solutions, no chaotic solutions and the band peak at a user-definable frequency.

Now let's outline the technique of nonlinear analysis which proceeds by substituting (4) into
(3), multiplying by < najje-'-h-I and integrating over all space. This yields a series of equations
for the time-varying amplitudes, eg, ý,j;

4N, j Ijm < uaMIS2Imak >Incl > + ...cubic terms (6)

where N1 = < uajluaj > and

<uaj l-jmak >lal > = ( 02jl)(I-ak >),(I-l >),. (7)P9?r OC98C, •

Here the subscripts on the bra's and kets refer to their ci'th component. Remarkably, for our
system (2), the quadratic and cubic nonlinear interaction coefficients evaluate to / and -t respec-
tively. We simplify the amplitude equation set by simple truncation: All lower modes are ignored
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since their amplitudes are very small due to 1,,j being large and negative. Also since our pattern
will be produced by the frequency at the centre of the band, we see that harmonic modes can
be neglected for the same reason. Fig.1(a) shows that the dc-mode cannot be neglected, so the
lowest-order system of amplitude equations describing the formation of a pattern in 2D becomes

* + - , 3 " 3"

ý1 = 1 , + # /3CsO s +P',44- 7 ,4244ý; - X-

.3
o2 = ,74 +6$$ 1'1- fý, 3 $14-X

ý3= 0'343 + 0'$2 $ + 0'3$1 - -7 ý266ý - X
2

ý4= 0'4 4 + 3664+3 6 72$ý -'fý - X4(8)

where ýj is the dc-mode and 643,6 have equal kI& shown in Fig.2(b) and where /3' =O3/N 1 etc.
The terms in (8) have been selected by the above analytical procedure since the wavevectors in
the corresponding interaction sum to zero, e.g., the term 62•4 in the equation for ý3 is selected
since -k_ + k,2 + k4 = 0. Shown in Fig.2 this corresponds to a simple blob pattern. In (8) the X3
represent the sum of self and cross damping terms found in each mode equation, with the form
ý4/4 and E. 3ýj 1ý1'/4, except for ý1- These terms always act to bound the growth of all modes,
while those terms explicitly shown in (8) cause all modes to grow. Resonances can be seen, eg
mediated by the quadratic nonlinearity between modes ý2,6,ý4. A detailed discussion of sets of
amplitude equations and thei; properties can be found in [7]. Setting ý2 = ýa = C4 and assuming
that 4j is small, we can solve the equation 0'(a) + /3'O - "yt2 = 0 as a function of oe and obtain
the solution curve for the blob pattern, Fig.1(b). We have also obtained a solution diagram of a
10-mode truncated system using continuation software. Blobs bifurcate transcritically.

0.25

....2.. ... ... 0.15

-OA4 , . ! ,'=." 0.1 Blob

S0.R\0.1
A..6.............

-01 ....... ... ............. .............
.095

-0.1
0 0.1 0.2 0.3 04 05 0.9 0.92 0.94 0.96 0.9 I

k /27% o4

Figure 1: (a) Dispersion curve showing upper and lower a's, or. showing a band of unstable
modes.(b) Solution diagram from (8); full lines show stable solution and dotted unstable.

Let's now look how we can use this system to find a defect in a textile image as shown in
Fig.3. We assume that we find a range of parameters where the RD-CNN system supports the
particular textile pattern and spatial frequency, here we continue with a hexagonal blob pattern.
If we apply a textile image with defect, Fig.3(a), to the RD-CNN system, then the modes in (8)
and interactions between them will be activated, leading to growth of the blob pattern, at least in
area: of correct textile. In the defect region, growth to blob pattern will occur more slowly if at
all, since an incorrect mix of spatial frequencies is present (usually too many leading to excessive
damping). We have differential growth rates between defect and OK regions so that when the OK
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k4

figure 2: Blob pattern (a) made of three plane waves and (b) their associated wavevectors which
sum to zero.

region has reached its 'stable aymptotic state' (sAs ), the defect regions, if still evolving, have a
low numerical value. Defect detection proceeds by simple thresholding at the OK SAS numerical
value determined previously.

The exact details of this differential growth (described in [7]) depend on several factors, one
of which is correlation length effects: A wide band of unstable modes implies a short correlation
length in space, so that defect and OK areas grow more-or-less independently. If the RD-CNN
system supports several patterns for the parameters used, then each region may evolve to an
independent pattern each with its own SAS. In our example here, there are two patterns supported,
blobs and rolls. Figure 3(c) shows localized evolution to these independent patterns for a short
correlation length system. Conveisely, when the unstable-mode bandwidth is made narrow, then
the correlation length is large, and the differential growth of a single pattern described above
occurs. The concept of a parametrically tuned effective correlation length in a CNN is interesting.

IL !I

Figure 3: Texture Defect Analysis. (a) Original image (b) SAS (c) Thresholded at pure blob SAS
level. The defect is detected as an absence of the correct sized blob. Parameters : D = 0.5618, a
0.95, 8 = 0.28 2 8 , -- 1.5, e = 0.25

3 Image Smoothing and Segmentation
Computer vision requires a segmentation of raw image input into object and background. Classical
approaches either maximize regions of similar image information, using principles of continuity and
coherence, or else look for edges, using ideas of dissimilarity and compactness. Operators which
are able to smooth noise out of homogeneous regions while preserving discontinuities are in great
demand, as are detectors of lines, curves and other geometrical shapes. Our early investigations
of RD systems looked at their ability to produce non-periodic localized solutions, isolated lines
and blobs, as would be found in a typical image of blood cells, satellite photos, etc. We found
for several systems a useful ability to respond selectively to objects of certain scale. There was
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even evidence of grouping of object parts together in a hierarchical manner. Unfortunately these
systems have not yet yielded to analysis, and remain rather ad i,.c. We nevertheless feel they
deserve more attention. Our general approach was to invoke several fields, coupled nonlinearly.
Each field, a component in a RD-CNN vector, represented an image property. Our knowledge
about the real world and imaging process could be incorporated in the (nonlinear) relations hard-
wired into the equations. Let's take a simple example. Consider two fields, I(_) the image field
which is to be derived from the raw data O(A), and a discontinuity field g(g_). We have suggested
the following equation set

at = -I(I - O) + D D 21
ag

at = -,Kgg +jrJVI+ +D9
2 g (9)

First the discontinuity field g(A_); this is produced by image gradient information IVII, and decays
naturally with time constant r., and diffuses out with diffusion constant D. which is usually
small. We find that g accumulates close to discontinuities in the image, giving an edge map.

Now the image field I(a); this is produced from the raw input data O(g.) by the first term, and
decays naturally with time constant KJ, which maintains stability. The evolving image data I
diffuses to smooth over homogeneous regions, but not over edges, where the large discontinuity
field g effectively reduces the diffusion coefficient. Typical results on a satellite image are shown in
Fig.4; diffusion is hardly apparent over the strong discontinuties. Other equation sets have been
developed including line, junction and corner fields, but at the moment we know of no general

mathematical design approach for these systems.

IL

Figure 4: Original satellite agricultural image (a) segmented and smoothed in (b) while preserving
I sc•3 ntinuities.

4 Summary

Reaction-Diffusion systems can be designed to have useful cooperative properties enabling them to
analyze and enhance grey-value images. In the case of periodic structures, analytical and numerical
techniques are advanced enough to allow engineering of systems. We hope similar techniques may
soon be found to allow us to replace the ad hoc designs we use at the moment with more rigorous
systems.
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Abstract

In the last years completely integrable Hamiltonian systems were of great interest because of
their physical nature, e.g. the existence of soliton solutions, and their relation to eigenvalue and
sorting problems. But until recently, they fourd little interest among electrical engineers.

Under certain restrictions, cellular neural networks (CNN) come very close to some Hamil-
tonian systems, therefore they are potentially useful for simulating or realizing such systems. In
this paper, we will show how to map two one-dimensional nonlinear lattices, the Fermi-Pasta-
Ulamn lattice and the Toda lattice, onto a CNN. We demonstrate for the Toda lattice, what
happens, if the signals are driven beyond the linear region of the PWL output function. Though
the system is no longer Hamiltonian, numerical experiments reveal the existence of solitons for
special initial conditions. This interesting phenomenon is due to a special symmetry in the CNN
system of ODE's.

1 Introduction

In recent years, completely integrable Hamiltonian systems have attracted great interest. Closely
related to them is the existence of soliton solutions. The Fermi-Pasta-Ulam lattice and the Toda
lattice are classic examples of such systems [1] [2]. The Hamiltonian structure of such systems
implies, among other things, the physical property of losslessness with respect to energy. Due to
the discovery of systems, like the Toda. lattice, which are capable of solving eigenvalue problems
[3), a lot of important applications have become possible. Consequently, any task which can be
formulated as an eigenvalue problem is a potential application, e.g. rank filtering [4], [5], [6].

A lot of current interest in electrical engineering has been focussed on regular architectures of
analog nonlinear processing cells with local connections, called cellular neural networks [7], [8].
In general, they are not lossless and so soliton solutions do not seem to exist. Recently, Roska
et. al. generalized the original CNN structure to allow fairly general nonlinear and delay-type
feedback and control [9].

In this paper we demonstrate two things. First we show under what conditions the Fermi-
Pasta-Ulam (FPU) lattice can be realized exactly by a conventional CNN. Afterwards we map
a transformed version of the Toda lattice [10], [11], [3] onto the current framework of CNN.

The original CNN equations contain a piecewise-linear (PWL) map of the states with a
saturation characteristic. This nonlinearity can destroy the integrability of the Toda lattice
equations. But surprisingly under certain conditions it is still possible to find soliton solutions.
ThLe "invariants" of motion are no longer invariant, i.e. the system is not lossless but they exhibit
an interesting recurrent phenomenon. These recurrent phenomenon still allows sorting, subject
to some additional interpretations.

2 Cellular Neural Networks

The CNN is a nonlinear dynamical system of autonomous ordinary differential equations (ODE)
[7], [8]. If the state variables vui(t) are arranged in an M x N rectangle, then only the states
in a local neighbourhood of any particular state vui are coupled to the state v~,. Using the
current definition of CNN nonlinear templates A and b which are functions of internal states
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and input signals, as well as time delays are allowed. In this paper, however, only delay free
polynomial type nonlinearities are admitted. The equations describing the most recent class of
CNNs without time delay with 1 < i < M; 1 < j < N are as follows:
State Equations:

cd_=,_(_ 1 ( + S A(i,j; k, l),•tk(t) + E B(i,j;k,L)v.,k(t) +

AZ (i, j;kI, 1) (vypj(t), vyki(t)) + E .B(i, j; kc, 1) (vyj~ (t), v~jkz(t)) + I,(1)

Output Equations:
yi() (l•=ii(t) + 11 - IVi~)- 11), (2)

Input Equations:
Vuij = E13, (3)

Constraint Equations:
1•,= 3(0 )1 <5 1 , 1 iv =A _< 1 , (4 )

Parameter Assumptions: c>0', ' 0 (5)

For the purpose of this paper we will relax some of the assumptions to tailor to our needs. They
become clear in the context of the lattice mapping.

3 Lattice Equations

In general, one-dimensional lattices are described by a set n of structurally identical ODEs (first
or second order) with local coupling between the states 4 = f (Xk-1, Xk,zk+1). A special case
of these lattices are one-dimensional mechanical system consisting of n mass points connected
by nonlinear springs, i.e. a system of coupled oscillators. It is governed by the equations of
motion:

* = F (x - x•-_) - F (x+, - xh) k =,2,. (6)

with boundary conditions at both ends and initial conditions for all mass points.
Quadratic, cubic or piece-wise linear spring characteristics were investigated in the fourties

and early fifties by Fermi, Pasta and Ulam [1]. They observed that a sinusoidal initial condition
for z•k is repeated periodically, though the system is nonlinear. Related to this recurrence
phenomenon is the existence of soliton solutions of the lattice equations.

Toda investigated the discrete one-dimensional lattice with the nonlinear spring characterized
by an exponential force vs. r relationship, where r denotes the distance between the mass points
[2], F(r) = exp(-r) - 1, and where the outer mass points are fixed at x0 --+ -oo and x ,+- co.
It can be shown, both analytically and experimentally, that solitons exist [13]. The equations
of Toda were the origin of a series of mathematical developments after Symes' discovery of
an intimate relationship between the Toda lattice and the eigenvalue problems of symmetric
tridiagonal matrices [3]. With a nonlinear coordinate transform [10] the equations of motion (6)
with exponential force can be written as

ih= 2 (b2 - b 2- (7)
b1 = bk (ak+I - a(k). (8)

In the following we will call these equations the Toda lattice equations, since they are homeo-
morphic to the Toda lattice . If the initial conditions for ak, bk are specified as the entries of a
symmetric tridiagonal matrix A(0) with diagonal entries a, and off-diagonal entries bi, then the
fixed point of (7), (8) is characterized by at = )v,, bk = 0 where Ak are the eigenvalues of A(0)
with the additional property that AX > A2 > ... > A), i.e. they come out sorted. As is well
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unused

Figure 1: Mapping of the Toda lattice equations onto a la CNN architecture. The variables in
the cells denote the equation that is realized by the respective cell

known, a property of completely integrable Hamiltonian systems is the existence of as many
invariants of motion Hk as the degrees of freedom. The invariant H1 denotes the trace of the
matrix A(O) and H2 denotes the Frobenius norm of A(O). The system posesses n! fixed points
according to the n! permuations of Ak.

4 CNNs and Lattice Equations

After presenting the equations for CNN with unspecified matrices A, B, A, B and the equations
for the FPU and the Toda lattice, we are now ready to relate both systems. In the case of a first
order ODE lattice equation, the states of the lattice equation are identical to the CNN states.
The lattice equations from mass spring models are second-order ODEs in time with one spatial
dimension, while the CNN equations are first-order ODEs with two spatial dimensions. Hence,
we have the choice to use either a double-layer CNN or a 2 x n cell single-layer CNN. A special
choice for the template matrices A and A make the structure absolutely regular (Fig. 1 for
Toda lattice). This works well under the condidion that two rows and columns (shaded area) of
cells deliver zero signals to the cells.

4.1 Fermi-Pasta-Ulam Lattice

The FPU lattice with the PWL spring characteristic fits perfectly into the original CNN structure
with the coordinate transformation vrj = Xi - z,-. and the template

[0 K 0
A= [- 00j (9)

1 _2 1

where all other templates are zero. The scaling factor K has to be adjusted such that v1ij does
not leave the linear region of the output function. Only the states v.21 are forced to the linear
region of the output map. In this way simple experiments of the FPU lattice can be performed
on this CNN. The mapping of the FPU lattice onto the CNN is exact.

4.2 Toda Lattice

The Toda lattice equations can be further simplified by a transformation c, = b2, proposed in
[6], and a linear time scaling to drop the factor 2.

In detail the following template matrices are to be implemented:

0 0 ~ A2 A3

A [0 1/A.2j 0 0I 0 0 (10)
112 = i-ijij~ykI, A= 13 vki

We call this system the modified Toda lattice. The term 11A. is useful only in the presence of
R• < oo. It makes the system less dissipative, but the choice of ft. is very restrictive (ft. > R.)
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for stability reas.::. A, opposed to the FPU lattice, the mapping of the Toda lattice is exact
if all states vu,, utilize o011y the linear part of the output function. Bounds for the initial values
can be giveu.

4.3 M• difiec Toda Lattice

Because of the nonlinear output map, the CNN does not exactly behave like a Toda lattice
for initial conditions, which not meet the bounds. The saturation characteristics bounds the
derivatives, namely 6I < 2, bkl < 2. This implies bounded acceleration and propagation speed

in terms of the Toda lattice. kue to the boundary conditions b0 = b,, = 0, the fixed point is still
given by bk = 0. This follows by induction from the boundary conditions and the equations for
ha. As for the Toda lattice, no information on the ak is available.

5 Numerical Experiments with Modified Toda Equations

This section s aum-,.rzes numerical experiments on the modified Toda lattice ((1)- (5) and (10))
with a PWL output map (.2) The FPU lattice is not considered here because we only wanted
to show that a ,CNN, :ould be used for an electrical circuit realization of this lattice.

5.1 The Most Simple System

At first 3 examples for a 2 x 2 matrix are investigated.
Example:

A -2.0 0.11
AM 0.1 0

The t•ransients for aj, c2 , b, are shown in Fig. 2 a, b. The bounds of the derivatives stretch the

2. 4

tL . 2 ........ "
0 L0

"o 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 a 8 9 to

.a) "d)

-2 I.. .............

3 --- 2:J .
... .. ..... ................... j

------------....

0 1 2 3 4 5 6 7 a 9 10

C)

Figure 2: Example, a), b) trajectories a, (-), a2 (-- -), b ...... ), c) invariants H1 (-), H2
( ..... ), d), e) eigenvalues of the Jacobian matrix

transients, but the initial values al(0), a2(0) are still sorted by value. The system is no longer
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lossless but can be lossless, passive or active. The passive and active mode keep a balance such
that the invariant H2 is recovered after sorting. The invariant H1 does not change its value.

The solution of the Toda lattice and the modified Toda lattice differ by a time scaling of

V1 The invariant H2 yields H2 = 42 + &2 _ &2/2 cosh 2(&t + j). Hence, H2 is not constant, but
decreasing for t,,, < - , i.e. the system is passive, and increasing for tm > - 2 , i.e. the

system is active. So we have a symmetry with respect to tin.
In the modified Toda lattice for dimension n = 2 with special initial conditions such that

the ODE is still nonlinear, a recurrence phenomena can be observed. This is due to a symmetry
in time, e.g. of the eigenvalues of the Jacobian matrix.

5.2 Sorting of Numbers

The modified Toda equations behave like a sorter, but a strict sorting order no longer exists.
This is due to the limited propagation speed of the data and the stability properties of the
fixed points. The linearization of the modified Toda lattice about a fixed point gives: &k = 0,

b1 = (g(&+i) - g(Ek))g'(O)bk. The variables 14 denote the values of the diagonal entries at
the fixed point and 9'(0) denotes the derivative of the output function. A fixed point is called
asymptotically stable' with respect to perturbations in bk, if for all first sub- and superdiagonal
entries, the following inequality holds (g'(0) > 0): g(Ak+1) - g(&k) < 0.

The inequality gives no information on the order for &k+l and ak for hk+1 > 1 and &k > 1
(-1 equivalently). So their order at the fixed point is undecided.

Suppose Ij&j < 1 for n, values, ak > 1 for n+ values and i&k < -1 for n- values. Then, for
the modified Toda lattice the number of asymptotically stable fixed points nfp is determined by
the number of permutations of the elements with ak > 1 and with &k < -1, thus nfp = n+!n-!.

If the output map is applied to the sorting result, a half order is realized, since all values
a& > 1 (hk < 1) reduce to EI = 1 (h,, = -1).

The multiplicity in the fixed points is caused by the bounded derivatives. Therefore the
propagation speed for data 1I4. > I is equal. So their final position depends on the initial
position.

5.3 Soliton Solutions

An interesting result of the modified Toda lattice equations is the existence of soliton solutions.
Such a solution requires the initial conditions to be such that the ODEs operate in a nonlinear
regime. Then a wave with constant shape is built up and two waves pass each other without
changing their shape after the collision.

In Fig. 3 the evolution of (states vs. time) of the variables ak for a lattice of dimension 7
with initial values

b,, b,-1 1 .. 0.01 0.01 0.01 0.01 0.01 0.01

is shown. The little irregularity in the shape of the curves is due to a downsampling of the
simulation result. These initial values exclude either a pure Toda lattice or a purely linear ODE.
This picture reveals the typical behaviour of soliton solutions: their shape is constant over time
and is not changed by head-on collisions.

6 Conclusion

In this paper we have shown how two famous nonlinear lattice equations, the FPU lattice and
the Toda lattice can be mapped onto a CNN. For this purpose certain original restrictions on
the templates, such as symmetry, were dropped. Nevertheless the system is still stable, because
th,. underlying mechanical models are stable. The mapping is exact under certain conditions for
the state variables or initial conditions, respectively. Otherwise, the nonlinear output map of

'Strictly speaking they are only stable.
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Figure 3: Soliton solution in modified Toda lattice with head on collision of two solitons

the CNN modifies the lattice equations. This was demonstrated for the Toda lattice. Numerical
experiments and some analytical reasonings show that the sorting operations can be performed
for certain initial conditions. It has to be stressed that the system is not Hamiltonian, but
possesses symmetries in time.
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ABSTRACT

It is shown that the game of life algorithm, which is equivalent to Turing machine, can be realized by
CNN. Next, a multipath CNN algotrithm is shown demonstrating the capabilities of analog/logic
(analogic) software.

1. INTRODUCTION AND THE MAIN RESULTS

It is well known that in the realm of logic computing Turing machines are universal in a sense
that any conceivable algorithm (recursive function) can be realized with it. In the field of analog regular
processing arrays it has been shown that any nonlinear operator with fading memory can be realized by
at most 4 layers of neural networks containing memoryless nonlinearities and delays [2]. Cellular neural
network (CNN) is a new paradigm [1] for locally connected, geometrically placed, analog, 3D regular
processing arrays. By introducing the nonlinear and delay-type templates and additional capabilities [3]
we have an extremely broad universe of functionalities. Multi-layer perceptrons can be realized also by a
class of cellular neural networks [4]. It can be shown that all the three types of partial differential
equations can be approximated by CNNs [3c]. The programmable CNNs [3] provide a new quality: a
simple way to solve CNN algorithms, a kind of analog software.

The silicon realization of CNN is convincing: the first tested CNN array has a capability of 0.3
TeraXPS on a chip [9] with 2 micron technology (fixed template) and the first programmable dualy
computing CNN chip provides the full programmability [8].

Hence, it seems that the programmable CNN, in the above sense, is an universal
programmable analog array computer.

In this report we show that

- the game of life can be realized by CNNs which means that any Turing machine can be realized
by simple programmable CNNs,

- complex image processing tasks can be realized by programmable dual computing CNN by
showing three useful CNN solutions (one shown in details)

Thus, we can prove that the programmable CNN is, theoretically, a universal machine In both
the analog and the logical field. Moreover, for a broad class of problems the practical CNN algorithms
represent a highly efficient truly parallel solution. In view of recent neurobiological results [10,5,6,151
and our first biological CNN models [111 it seems almost certain that the programmable CNN provides
a very strong modelling paradigm for a lot of living systems.

2. THE GAME OF LIFE TEMPLATES

2.1. The basic step template

Being a no-player game, the life game [71 is not realiy a game in its traditional meaning. In
principle it is "played" on an infinite squared board (cell array). At any time some of the cells will be alive
and the others dead. After setting up an initial table, in each time step, the next state Is defined by the
following rules [7]:
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BIRTH: a cell that is dead at time t becomes alive at time t+ 1 only if exactly 3 of its eight
neighbors were alive at time t.

DEATH: a cell that is alive at time t and has less than 2 or more than 3 alive neighbors at time t
will be dead by time t+ 1.

SURVIVAL: a cell that was alive at time t will remain alive at t+ 1 if and only if it had exactly 2 or
3 alive neighbors at time t

The facts, that the cells of the array can be projected onto those of the CNN arid the new state
of a cell is determined only by the previous state of it and that of its neighbors, just like with the CNN,
are appealing to realize the game with a CNN. The 2 layer network of Fig. 1. makes one step of the
game.

All=[ 1 1[0.3 0.3 0.31
A12=[ a Bll= 0.3 0.3 0.3

A 0.3 0.3 0.3 12 =[ 1 ] - .

I=1 -0.6 -0.6 -0.6 1
12=- B2 1 = -0.6 0 -0.6

120.8 -0.6 -0.6 -0.6J

Fig. 1: The 2 layer single-step game of life template. The initial state has to be fed on the input
of layer 1, and the new state will appear on the output of layer 2.

To understand how this network works, let's reformulate the rules of the game: a cell will be
alive if at least 3 of the 9 cells in its 3x3 neighborhood are alive AND at most 3 of its 8 neighbors are
alive. Layer one implements the first part of this conjunction, layer 2 realizes the second part and the
conjunction itself (see Fig. 2.).

2,tVIIT I -- -- UT'• 1 JT,.UI

'- I i I
---. II 2

(a) (b) (c)

Fig. 2: The single-step life algorithm, a: Input pattern, b: output of layer 1, c: new state (output
of layer 2)

2.2 Versions of a multistep CNN algorithm

2.2.1 Discrete Time CNN with thresholding sigmoid

The algorithm described in the previous chapter executes a single step of the life game with
one transient. It would be much more useful, if we c6uld simulate a whole life history with one CNN, i.e.
the transient would settle down only if the game reached a stable state, otherwise it would run forever
(see 17] for some stable and oscillating patterns and the famous forever growing glider gun). To reach
our goal, two transients should be composed somehow: one transient between two states and another
from the initial state to a final state or to eternity. For this reason the output should be fed back to the
input, Inducing a new transient. But there is a problem with timing: a new step can begin only after the
termination of the previous one. Unfortunately, simply feeding back layer 2 of the above described CNN
to the input does not meet this condition, because the time required to reach the new state (all cells
have values ±1) depends on the number of neighbors, i.e. it alters from cell to cell, causing a terrible
confusion. This problem can be solved most easily with a Discrete Time Cellular Neural Network
(DTCNN) [12], which is equivalent to the CNN calculation using a forward Euler iteration with stepsize 1
and thresholding sigmoid [13]. Here the output state of a cell is binary (±1) and is determined by the
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sign of the state of the cell. The above described algorithm needs to be slightly modified: three layers
are required, one for each part of the conjunctior, and a third layer to realize the conjunction itself,
yielding the output pattern. (Fig. 3.).

A 0.3 0.3 0.3 10.3 0.3 0.3 Ii=1A 0.3 0.3 0.3

:8-6 -0.6 -0.6 12=-0.8

A32=1 I A2 3 = -06 0 -0.6 13=-1.5
L -0.6 -0.6 -0.6

Fig. 3: The 3 layer DTCNN template executing the whole life history.

2.2.2 Discrete Time CNN with piecewise-linear thresholding

Another solution can be achieved with a DTCNN using piecewise-linear thresholding, just like in
the continuous-time CNN. Using this network the output can take any value between -1 and + 1. These
values can be used to code information about the appropriate cell. Using nonlinear templates [3a,b] we
can extract the coded information. The template of Fig. 4. realizes the multistep game of life algorithm in
one layer. The first step of the algorithm is to code the information about the previous state and the
number of alive neighbors of the current cell, and the second step is to decode this information, i.e. to
drive the pixel black or white, depending on the coded value. This means that a new life pattern appears
after every second iteration step. The result of the first, coding step is:

base number + 0. 1 * number of alive neighbors

where the base number is -0.5 and -0.45 for the white (-1) and black (+ 1) cells, respectively. Function b
"counts" the base number and function a the number of alive neighbors at x = ±1.

Consequently, the second step, the decoding phase should drive the pixel black, if the output
of the first step is in the [-0.25,-0.15] domain. This is where the value of function b is + 1.

* b,

A[a a a =
A= a b a i=0-

a a a .
I" -a . J I oU.45

-I

Fig. 4: Multistep game of life template for piecewise-linear DTCNN

3. MULTIPATH CNN ALGORITHMS

Due to local interconnectivity the CNN seems to be mainly suitable for detecting local
properties, however some global properties can be extracted as well. Moreover, using the programable
CNN multipath algorithms even more complex problems can be solved.

3.1 Blob-counting

Our task is to count blobs in a grey-scale image. The key of the algorithm is to associate a blob
with a well-defined significant point and after suppressing the other pixels we only have to count these
significant points. Shifting the remaining pixels to one side of the picture (e.g. with horizontal CCD 114])
the counting of them becomes easy.

The basic idea of the aloorithm

Let's associate each blob with its local southern places (i.e. with pixels having neither south-
eastern, nor southern, nor south-western direct neighbors). In two cases a blob can have more than
one southern place:
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(i) The bloo has a horizontal southern edge (Fig. 5e);

(ii) The blob is concave from the bottom (Fig. 5b,5d and their vertical mirrors);

But fortunately neither causes any problem, because in case (i) the horizontal CCD contracts the
soutriern places into a single pixel, and in case (ii) each concave place yields one new local southern
place, so the difference of the number of the local concave places and the southern places gives the
correct result, ie. the number of the blobs.

(a) (b) (c) (d) (e) (f)

Fig. 5: /n 3X3 neighborhood these bottom edges (and their vertical mirrors) could occur
(a,b,c,d,e). The LCP template extracts two pixels from location (f0. The If sign denotes
the blob pixels, and the . sign denotes the background pixels.

Holes can cause problems, because their local northern point is ,.;cal concave place, but it doesn't
increase the number of the local southern places. So if we want to know the number of the blobs we
have to fill their holes first. Unless we do it, the algorithm gives the Euler number of the image, i.e. the
difference of the number of blobs and the number of holes.

The templates and the flow diagram of the algorithm

The complete algorithm is shown on Fig. 7. The templates of the algorithm work on black-and-
white pictures, so the first step is a grey-scale to black-and-white transformation using the average
template [1]. In the second step we have to fill the holes with the hole-filler template [14]. We call the
output of these transformations the preprocessed picture.

At this point the algorithm branches into two independent parallel paths. In the first branch the
Local Southern Elements (LSE) are extracted by the LSE template (Fig. 6a). Next they are shifted
horizontally with the CCD transformation. The last step of this branch is to count the black pixels. It is
easy using a logical algorithm because they are only on one side of the picture in determined order. The
CCD transformation causes in this case a large data reduction without any information losses.

In the second branch the task is very similar. The only difference is that instead of the LSE
template, the Local Concave Places detector (LCP template Fig. 6b) is used. The LCP template
associates one pixel with each local concave place except in the situation depicted on Fig. 5f, where
two pixels are extracted but the horizontal CCD transformation melts these two neighboring pixels into
one.

Finally, the last step is the subtracting the number of LSPs from the number of LSEs.

[0 0 01 I0 0 20
A=[ 2 ] B= 0 2 0 I=-5.5 A=[ 2 ] Bj 1 2 1 I=-5.5

-1 -1 -1 -0.5 -' -0.5

(a, (b)

Fig. 6: The LSE (a) and the LCP (b) templates

An example: Counting keys

A grey-scale camera picture was taken of seven keys with a resolution of 63x62 pixels (Fig. 8a).
First it was transformed to black-and-white (Fig. 8b), and then the holes were filled (Fig. 8c). Next,
following the two parallel branches, the local southern elements (Fig. 8d: 24 connected components)
and the iocal concave places (Fig. 8e: 17 connected components) were extracted. Finally: 24-17= 7: it's
correct!

In case of a conservative analog VLSI realization it could take about 20 microseconds (It
depends only on the size of the picture).
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GREY SCALE PICTURE

iaverage template N
BLACK & WHITE PICTURE
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horizontal ccd horizontal ccd
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N t -
subtract ---
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Fig. 7: The flow-diagram of the blob counting
algorithm. Capital letters are used to
denote images.

Fig. 8: The five steps of counting keys: the initial a b
grey-scale image (a), the black and white c
image before (b) and after (c) hole filling, d
the local southern (d) and concave
elements (e) e

3.2. Other multipath CNN algorithms
Two other multipath CNN algorithms were realized. The first one can make blob size

classification. This probabilistic algorithm can classify larger blobs than the template size. The second
one can detect textile-pattern errors. It works on a simple sleazy weaved textile, and can detect the fiber
breakings and the knots.

280



ACKNOWLEDGEMENTS

This work has been supported by the research grant No. 2578/91 of the National Research
Fund of Hungary (OTKA) and a joint grant No. INT 90-01336 of the National Science Foundation of the
United States of America and the Hungarian Academy of Sciences.

REFERENCES

[1] a L.O.Chua and L.Yang, "Cellular neural networks:Theory', IEEE Transactions on Circuits and
Systems, Vol.35, pp.1257- 1272, 1988.

b L.O.Chua and L.Yang, "Cellular neural networks: Applications", ibid., pp. 1273-1290.
[2] T.Roska, "Analog events and a dual computing structure using analog and digital circuits and

operators", pp.225-238 in Discrete Event Systems: Models and Applications (eds. P.Varaiya and
A.B.Kurzhanski), Springer-Verlag, Berlin, 1988.

[3] a T.Roska and L.O.Chua, "Cellular neural networks with nonlinear and delay-type template
elements", Proc. IEEE CNNA-90, pp.12-25, 1990

b T.Roska and L.O.Chua, "Cellular neural networks with nonlinear and delay-type template
elements and non-uniform grids", Int.J.Circuit Theory and Applications, to appear

c T.Roska and L.O.Chua, "The dual computing analog software", Report DNS-2-1992, Dual and
Neural Computing Systems Laboratory, Comp.Aut.lnst., Hungarian Academy of Sciences,
Budapest, 1992

[4] J.A.Nossek and G.Seiler, "An equivalence between multi-layer perceptrons with stepfunction type
nonlinearity and a class of cellular neural networks", Report No.:TUM-LNS-TR -90-7, Inst. Network
Theory and Circuit Design, T.U.Munich, Munich December, 1990

[5] a J.Allman, F.Miezin, and E.McGuiness, "Stimulus specific responses beyond the classical receptive
field: neurophysiological mechanisms for local-global comparisons in visual neurons",
Ann.Rev.Neurosci., Vol.8, pp.407-430,1985

b G.Montgomery, 'The mind's eye", Disciver, May 1991, pp.51-56
[6] W.Heiligenberg, "The neural basis of behavior: a neuroethological view", Ann.Rev.Neurosci.,Vol.14,

pp.247-267, 1991
[7] E.Berlekamp, J.H.Conway, and R.K.Guy, Winning ways, Academic Press, New York, 1982, Chapter

25, What is life?, pp.817-850,
[8] K.Halonen, V.Porra, T.Roska and LO.Chua, "VLSI Implementation of a reconfigurable CNN

containing local logic', Proc. CNNA-90, pp.206-215, 1990
[9] J.M.Cruz and LO.Chua, "A CNN chip for connected component detection", IEEE Trans. Circuits and

Systems, Vol.38, pp.812-817, 1991
[10] J.H~mori, T.Pasik, P.Pasik and J.SzentAgothai, "Triadic synaptic arrangemetns and their possible

significance in the lateral geniculate nucleus of the monkey", Brain Research, Vol. 80, pp. 379-393,
1974

[11] T.Roska, K.Lotz, J.Hcmori, E.LAbos and J.Tak~cs, "The CNN model in the visual pathway - Part I:
The CNN-Retina and some direction- and length-selective mechanisms, Report DNS-8-1991, Dual
and Neural Computing Systems Laboratory, Comp.Aut.lnst., Hungarian Academy of Sciences,
Budapest, 1992

[121 H.Harrer and J.A.Nossek, "Time discrete cellular neural networks: architecture, applications and
realization", Report No. TUM-LNS-TR-90-12, Technical University of Munich, November 1990, to
appear in Int.J. Circuit Theory and Applications

[13] T.Roska, "On the qualitative and quantitative relationships between the analog and digital
realizations of neural computing circuits", Report DNS-2-1989, Dual and Neural Computing Systems
Laboratory, Comp.Aut.lnst., Hungarian Academy of Sciences, Budapest, 1989

[14] T.Matsumoto, T.Yokohama, H.Suzuki, R.Furukawa, A.Oshimoto, T.Shimmi, Y.Matsushita, T,Seo
and L.O.Chua "Several Image Processing Examples by CNN" 1990 International Workshop on
Cellular Neural Networks and their Aplicatlon CNNA-90 Proceedings, pp 100-112,

[15] D.C.Van Essen, C.H.Anderson, and D.J.Felleman, "Information processing in the primate visual
system: an integrated systems perspective", Science, Vol.255, pp.419-423, January 24, 1992

281



CNNA'92

The distinguished members of the. Scientific Committee of the Second International
Workshop on Cellular Neural Networks and their Application take pleasure in presenting
to

P. Thiran H. Harrer
this Certificate in recognition of the scientific achieve- )n
ment attained as represented by the contributions

Two Causes of New Test Results of aInstability of Cellular 4x DTCNN Chip
Neural Networks

which has been selected as the Most Outstanding Submitted Paper of CNNA'92.

CNNA'92, Munich Germany

October 14-16, 1992

The Scientific Committee

282



Author Index

Author Session p. Kaluzny Theory I 112
Kispal Application 203

Aizenberg, I.N. Design 36 Kiss Application 216
Aizenberg, N. Design 36 Kohn Application 238
Andreyev Theory I 135 Kovacs VLSI 151
Balsi Theory I 129 Kozek Application 203

Theory II 246 Kufudaki Design 42
Barone Theory II 246 Kuminov Theory I 135
Bito Application 216 L~der invited 45
Belsky Theory I 135 Theory I 106
Boros Application 216 Magnussen Learning 80
Chigawa Application 191 Martinelli Theory I 117
Chua inaugural 1 Masetti VLSI 151

Learning 55 Mathis Design 417
Learning 68 Chairman 191
Theory I 106 Mizutani Learning 86
Theory II 276 Mod Application 210

Cimagalli invited 92 Theory II 252
Theory II 246 Moschytz Design 11

Civalleri Chairman 55 Nachbar Learning 55
Theory I 94 Learning 68

Crounse Design 29 Nakayama Application 191
Dabrowski Theory I 123 Nossek Learning 55
Dalla Betta VLSI 151 Learning 68
Dehaene Theory II 234 Learning 80
Dmitriev Theory I 135 VLSI 163
Er6ss Application 216 Application 238
Espejo VLSI 169 Theory II 258
FrOhauf Theory I 106 Theory II 270
FOssl Learning 55 Orgorzalek Theory I 123
Galias Design 23 Oosterlinck Theory II 264
Gilli Theory I 94 Osuna Design 11
Graffi VLSI 151 Paul Theory !1 270
Guzelis Learning 74 Perfetti Theory I 117
Hansen Learning 62 Porra Chairman 151
Harrer VLSI 167 Price Theory II 264

Application 238 Radvdnyi Application 216
Hasler Chairman 94 Application 222
Heiligenberg invited - Ramacher Chairman 234
Ho Application 210 Rodnguez-Vasquez VLSI 169

Theory II 252 Roska Design 29
Huertas invited 141 invited 181

VLSI 169 Application 216
Jankowski Application 197 Theory II 276
Kacprzak VLSI 157 Savaci Theory II 240

283



Schuler Learning 55 Ueda Theory II 252
Learning 68 Vandewalle Theory II 234

Schwarz Design 17 Application 240
Seiler Theory II 258 Vass Application 216
Slot VLSI 157 Venetianer Theory II 276

VLSI 175 Wallinga Chairman 11
Smith Application 238 Wambacq Theory II 264
Szolgay Application .203 Wanczuk Application 197
Takahashi Theory II 252 Yu, D. Application 210
Tanaka Design 29 Yu, X. Application 210
Thiran Theory I 100 Zarandy Theory II 276

284



THIS DOCUMENT IS BEST

QUALITY AVAILABLE* THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.


